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Abstract. For many years, meteorological models have been run with perturbated initial conditions or parameters to produce 

ensemble forecasts that are used as a proxy of the uncertainty of the forecasts. However, the ensembles are usually both 

biased (the mean is systematically too high or too low, compared with the observed weather), and has dispersion errors (the 10 

ensemble variance indicates a too low or too high confidence in the forecast, compared with the observed weather). The 

ensembles are therefore commonly post-processed to correct for these shortcomings. Here we look at one of these 

techniques, referred to as Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). Originally, the post-processing 

parameters were identified as a fixed set of parameters for a region. Later there were methods for regionalizing the post-

processed output, but still with regionally constant parameters (Berrocal et al., 2007). In hydrology, Hemri et al. (2013) 15 

extended the method to have temporally consistent parameters between time steps for a single location. Engeland and 

Steinsland (2014) developed a framework which can estimate post-processing parameters which are different in space and 

time, but still can give a spatially and temporally consistent output. The application of our work is the European Flood 

Awareness System (http://www.efas.eu), where a distributed model is run with meteorological ensembles as input. We are 

therefore dealing with a considerably larger data set than Engeland and Steinsland (2014) which is likely to make their 20 

method unfeasible in practice. We also want to regionalize the parameters themselves for other locations than the calibration 

gauges. Lastly, not all forecasts are available for all lead times, as in their approach. We are therefore testing a slightly 

different approach, where the post-processing parameters are estimated for each calibration station, but with a spatial penalty 

for deviations from neighbouring stations, depending on the expected semivariance between the calibration catchment and 

these stations. The estimated post-processed parameters can then be used for regionalization of the postprocessing 25 

parameters also for uncalibrated locations using top-kriging in the rtop-package (Skøien et al., 2006, 2014). We will show 

results from cross-validation of the methodology and although our interest is mainly in identifying exceedance probabilities 

for certain return levels, we will also show how the rtop package can be used for creating a set of post-processed ensembles 

through simulations. 

 30 

1 Introduction 

Ensemble modelling has a long history in meteorology, and is also increasingly used in hydrology, mainly using the 

meteorological ensembles as forcing. By perturbing the initial conditions or parameters of the model, an ensemble of 

forecasts is produced, assuming that this is a proxy of the uncertainty of the forecast. However, even if the perturbations are 

sampled from a probability distribution of the conditions or parameters, it is frequent that the resulting ensembles are both 35 

biased (the mean is systematically too low or too high) and wrongly dispersed (the ensemble variance indicates a too low or 

too high confidence in the forecast, compared with the observations afterwards). 
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It is therefore common to post-process the forecasts. Two commonly methods are frequently used in meteorology: Bayesian 

Model Averaging (Raftery et al., 2005), which mainly focuses on calibration, and optimization based on the Ensemble 

Model  Output Statistics (Gneiting et al., 2005), referred to as EMOS. Mostly the EMOS-method is calibrated with the use of 

Continuous Ranked Probability Score (CRPS), which is an indicator which punishes both biases and dispersion errors.  

We will here mainly focus on the EMOS-method. In the original contributions in meteorology, it was common to fit a 5 

regional set of parameters for the post-processing. From the post-processed distributions for each location, samples were 

drawn to generate a post-processed ensemble. These were spatially independent, but Berrocal et al. (2007) extended the 

methodology to use the spatial structure of the errors to generate a spatially structured covariance matrix which can be used 

to generate spatially consistent samples, based on the Geostatistic output perturbation technique (Gel et al., 2004). Their 

method is still using the same set of weights for all locations. 10 

Our application of ensemble forecasting is the European Flood Awareness System (EFAS, http://www.efas.eu), an 

operational service for flood forecasting in Europe. Different meteorological ensemble forecasts are used for the forecasting. 

Contrary to the previous applications, we would therefore expect some of the ensembles to be better for some regions, and 

we do not want a single parameter set for the complete modelling region. Additionally, not all ensembles are available for all 

lead times, and we would prefer a method which will assure temporal continuity between lead times.  15 

The application of these types of post-processing techniques in hydrology started later. Hemri et al. (2013) developed a 

method for postprocessing runoff forecasts for individual stations, using the methods of Berrocal et al. (2007) for 

incorporation of the correlation between lead times. This correlation is likely to be higher for runoff than for meteorological 

variables. Engeland and Steinsland (2014) presented a method which would fit different weights to different locations and 

lead times, but still assuming the same number of forecasts for all lead times. 20 

The previous applications in hydrology did not consider forecasts outside the calibration points, similar to what Berrocal et 

al. (2007) did for meteorological applications. In this paper we will present a methods which will make it easier to make 

predictions outside calibration points, and also for making simulations of the possible discharge.  

 

 25 

2 Data 

The analyses in this paper are based on a combination of meteorological forecasts and ensemble forecasts from ECMWF, 

DWD, COSMO-LEPS and UK Met Office. We use forecasts from a period of almost two years (8 Jan 2012 – 31 Dec 2013). 

For each day, the forecasts have up to 10 days lead time.  

ECMWF: The European Centre for Medium Range Weather produces forecasts for the next 10 days. The forecast from 30 

ECMWF is an ensemble with 51 members, in addition to a deterministic forecast 

DWD: The German Weather Service produces a deterministic forecast for the next 7 days. 

COSMO-Leps: The Cosmo consortium produces an ensemble forecast with 16 members.  

UK-MET: The UK Met office produces an ensemble of 24 members. 

Each individual forecast has been used as input to the hydrological model LISFLOOD (Van Der Knijff et al., 2010; De Roo 35 

et al., 2000), giving an ensemble of runoff values for each forecast day and each lead time. LISFLOOD is a gridded model, 

which numerically predicts the runoff for each pixel in a 5*5 km grid. The extent of the forecasts and the hydrological model 

covers most of Europe.  
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As true values, we are using simulated runoff at 701 stations. The runoff has been simulated from interpolated observed 

values, using the same model setup of LISFLOOD as for the forecasts. There are some additional stations in the original data 

set, but these were discarded from the analyses as the runoff appeared to be unreasonably high compared to the estimated 

basin size, or that some of the forecasts were not available for all lead times and models. 

We are using simulated values instead of real observations for comparison, as these will have the same model errors as the 5 

forecasts, such as boundary errors and routing errors.  

The simulated and forecasted runoff data is divided by catchment area in 1000 km
2
. The normalization on area is to work 

with more area independent values, whereas the use of 1000 km
2
 for normalization is to avoid some numerical issues.  

 

3 Method 10 

3.1 Post-processing 

The post-processing method we are applying in this paper is based on the Ensemble Model Output Statistics method 

(Gneiting et al., 2005). Shortly described, the idea is that the mean and variance of a range of forecasts might be biased and 

wrongly dispersed, so we want to find a weighted mean of the ensemble, whereas the variance can be assumed to fit a 

regression equation. As we have a combination of deterministic and ensemble forecasts, we will use the deterministic 15 

forecasts and the mean of each ensemble forecast for the bias correction, i.e., for a particular station i and lead time l: 

                                          (1) 

 

Where ail is a constant, bil1, …, biln are weights, eil is an error term averaging to zero, and Xil1, …, Xiln are the forecasted 

variable for this location, deterministic or mean of the ensemble. The deterministic forecasts are from ECMWF and DWD, 

whereas we use the mean of the ensembles from ECMWF, COSMO and UK Met office, giving n=5 for lead times 1-5. The 20 

forecast Yil should then be unbiased, but we would also like to know the variance of eil. This is modelled as a linear function 

of the variance of all ensembles: 

    
      (   )            

  (2) 

 

where    
  is the variance of all individual ensemble members, and cil and dil are non-negative coefficients. This gives a 

Gaussian predictive distribution: 25 

  (                                           
 ) (3) 

 

This can be optimized by minimizing the continuous ranked probability score (CRPS), as described by Gneiting et al. (2005). 

For each day d in the calibration period, the CRPS-error for a certain station i and lead time l is defined as: 

 

 
    (           )  ∫ [    ( )   (        )]

   
 

  

 

 

(4) 

Where  (         ) is the Heaviside function, which is 0 for          and 1 for         . If F is the CDF of a normal 30 

distribution with mean      and variance   , the integral can be replaced with: 
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where   
           

    
 is the normalized prediction error and  ( ) and  ( ) represents the CDF and the PDF of a N(0,1) 

distribution. Equations (4) and (5) can be seen as objective functions when summed over all instances used in the calibration. 

It is likely that F might violate the normal distribution assumption for runoff variables, however, we will for simplicity use 

this assumption in this manuscript, and deal with deviations in future work.  5 

3.2 Interpolation of weights 

Our region of interest is Europe. We do therefore not expect one set of weights to be sufficient for the whole modelling 

domain. However, we have the ensembles for all grid cells along a river, and would like to be able to make predictions also 

for other locations than the calibration locations. The solution is to interpolate the weights along the river network, to have 

unbiased predictions for each pixel where a prediction is wanted. For this we will use top-kriging (Skøien et al., 2006, 2014). 10 

Top kriging is a geostatistical method for interpolation between areas of different spatial support, such as observations along 

a river network. The method is well explained in the citations above and will only be summarized here for river related 

applications as follows: 

A sample variogram is estimated from the observations for each gauge, as a spatial average if the variable is a spatial 

aggregate such as runoff and most runoff statistics. The centre of the upstream contributing area is used to compute the 15 

distances. Variograms are binned according to the size of each of the catchments, not only distance. 

A variogram model is found by jointly fitting regularized variogram values to the binned sample variogram values. 

A covariance matrix of expected semivariances between observation catchments and between observation catchments and 

prediction catchments is found from the variogram model, based on the size and location of the catchments.  

Interpolation and cross-validation is performed as in normal kriging, based on the covariance matrices. 20 

The most interesting features of this interpolation method is that it takes into account both network topology (2 locations 

which are connected on a river network usually gets higher weights than unconnected locations) and spatial proximity. The 

last feature takes into account both the size and the location of the catchments, not just the distance between the gauges or 

centres of gravity. 

However, the fitting method in Equations  (4) and (5) can give poorly correlated weights for neighbouring locations if two or 25 

more of the forecasts are highly correlated. For example, if we only had two forecasts and they were equal for a certain 

location, any combination of weights giving the same sum would give the same error. To force a certain correlation between 

weights, and variance coefficients between locations (all referred to as parameters below), we use an iterative procedure 

where we introduce a spatial penalty as a function of the modelled semivariance between two locations and the difference of 

all the m parameters: 30 
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Here the parameters of the calibration location is p0j whereas pij is the parameter value for the n locations with the highest 

correlation to the calibration location. The expected semivariance     between the calibration location and the neigbouring 

locations is found from a regularized semivariogram for mean runoff. Pc is a penalty coefficient to scale the spatial penalty 

to the CRPS-error.  

The calibration is done station by station. In the first iteration, no spatial penalty is added, as many neighbouring stations 5 

have not been computed yet. In the second iteration, Pc is set equal to 1. At the end of the second iteration, this coefficient is 

recomputed as two times the ratio between the CRPS-error and the spatial penalty. This Pc is used for the third iteration. In 

the calibration, the most recent parameter values are always used, i.e., if a neighbor has already been updated, this value is 

used instead of the one from the previous iteration. The locations are visited in a random order for each iteration. 

 10 

3.3 Simulations of runoff 

A common usage of post-processing in meteorology is to create simulations of the variable of interest. This can also be done 

with the post-processing we are presenting here, based on the calibrated parameters and the semivariogram above. The 

simulation method is based on the Sequential Gaussian Simulation method (Deutsch and Journel, 1998), combined with 

Kriging with uncertain data (KUD) (de Marsily, 1986; Merz and Blöschl, 2005).  15 

We start with the weighted mean and uncertainties for each calibration location.  

In a random order, we visit all calibration locations and prediction locations, and do the following step for each of them: 

1. For a new location, we predict the mean and the kriging variance, using the weighted mean for the calibration 

locations, and previously simulated locations as observations. For the KUD prediction, we use the weighted 

ensemble variance for the calibration locations. 20 

2. Sample a value from the predictive distribution (traditionally assumed to be Gaussian) with the prediction as mean 

and the kriging variance as variance. Add this to the set of observed/simulated values. This simulated value will in 

the subsequent simulations have an uncertainty of zero in the KUD prediction.  

3. Replace the weighted mean with a simulated value if the simulation concurs with a calibration location. 

Simulation of runoff values implies some numerical challenges. First of all, when we have multiple points along a river 25 

segment, the contributing area of these points might be almost similar in many cases. This can create highly correlated 

neighbours, which can again create singular or close to singular covariance matrices. We have found some methods to 

automatically remove some of these neighbours, still there might be some numerical challenges in solving the kriging 

equations. There are therefore some cases where numerical issues can give a negative kriging variance, which is first of all 

physically impossible, second, makes it impossible to draw a value above. We are still in the process of finding robust 30 

solutions for these cases, in the meantime there will be some points where we are not able to make simulations.  

A second issue is that runoff values are typically above zero. Using random sampling from a Gaussian distribution can give 

negative observations. We are therefore instead assuming a long-normal distribution in this case, log-transforming the 

predictive mean and variance with   
  as the logtransformed variance:   

      (
  

 
  )  before sampling. This ensures 

positive runoff values, but should be seen as an approximation to the correct solution and is likely to be slightly biased 35 

(Clark, 1998). We will further investigate better approaches for this case. 
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4. Results 

4.1 Fitting of EMOS-parameters and effect of spatial penalty 

The initial fitting of the parameters are done without the spatial penalty. We can therefore easily see how much the use of the 

penalty increases the CRPS-error and how we reduce the spatial errors as in Figure 1. The CRPS-error increases marginally 

for all catchments, but the largest increase is less than 25 percent and 75% of the catchments increase less than 5%. The 5 

spatial penalty reduces considerably with the iterations, 55% of the catchments see the spatial error reduced to less than 1/2. 

The last panel shows that the CRPS-error is dominating the total error for most catchments, and is considerably larger for a 

large group of them, whereas there are some (around 30%) where the spatial error dominates.  

We can also notice that there is quite a large range in the errors, both CRPS and spatial error in approximate range from 1-

1000. We have not analyzed the reason for this, although it is likely not related to area. First, the runoff has been divided by 10 

catchment area, second, we have plotted (not shown) both errors and ratios between errors against catchment area, without 

finding any strong relationships.  

 

 

Figure 1. Left and central panel: Development of CRPS-errors and spatial errors from first to last iteration for lead time of 15 

one day. Right: Comparison of CRPS and spatial error after last iteration. Solid line represents 1:1, whereas dashed lines 

represent 2:1 and 1:2 and stapled lines 5:1 and 1:5.  

 

4.2 Interpolation of EMOS-parameters 

Table 1 gives an overview of r
2
 of the cross-validated EMOS-parameters from Equations (1) and (2). The variable names in 20 

the equations are given in brackets for the column names. We can see that there is a good correspondence between the fitted 

parameters and the interpolated parameters. Some of the cells are given a color code, where the one red cell has r
2
 < 0.6, 

there is one orange cell with r
2
 < 0.7, three yellow cells with r

2
 < 0.8 and 8 green cells with r

2
 < 0.9. The remaining 59 

parameters have r
2
 > 0.9. This means that the top-kriging method can well be used for interpolating EMOS-parameters 

between different locations on the stream network, at least when the parameters have been fitted using a spatial penalty, as 25 

we have done in this manuscript. We have not yet examined in detail the reasons for the poorer results for a few locations 

and lead times.  
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Lead Var1 
(cil) 

Var2 
(dil) 

Intercept 
(ail) 

DWD 
(bil1) 

ECMWF 
(bil2) 

ECMWF 
mean 

(bil3) 

COSMO 
mean 

(bil4) 

UK 
mean 

(bil5) 
1 0.98 0.74 0.90 0.92 0.96 0.93 0.98 0.90 
2 0.98 0.88 0.85 0.92 0.95 0.93 0.95 0.93 
3 0.98 0.89 0.90 0.92 0.87 0.93 0.95 0.95 
4 0.98 0.95 0.94 0.92 0.92 0.94 0.94 0.97 
5 0.98 0.94 0.92 0.91 0.88 0.95 0.94 0.97 
6 0.91 0.57 0.88 0.76 0.65 0.79 NA 0.80 
7 0.96 0.97 0.96 0.94 0.91 0.94 NA 0.97 
8 0.97 0.97 0.85 NA 0.94 0.94 NA 0.97 
9 0.96 0.97 0.97 NA 0.96 0.95 NA 0.97 
10 0.97 0.96 0.97 NA 0.94 0.94 NA 0.97 

Table 1. Cross-validation r
2
-values for EMOS-parameters for different lead times. Background colors of cells refer to the 

cell-value, where the colors red, orange, yellow and green refer to values below 0.6, 0.7, 0.8 and 0.9, respectively.  5 

 

4.3 Simulation of runoff fields 

With the fitted parameters, we have an estimate of the predictive mean and uncertainty for each of the calibration locations. 

From these, we can simulate the specific runoff for each pixel along the river network. Figures (2) and (3) show the results 

from 4 simulations for the first and the 10
th

 forecast day, respectively, based on forecasts from February 17
th

 for a region on 10 

the German-Polish border. The forecast indicates a flood event to the end of this period (10
th

 forecast day), so the predictions 

and the simulations are considerably higher for Figure 3 than for Figure 2.  The dots show the predictive mean for the 

calibration locations based on the fitted EMOS-parameters, whereas the pixels show the simulated values based on the 

variogram and the predictive uncertainty from the calibration locations. We can see that the simulations are relatively close 

to the predicted mean for locations close to the calibration locations, whereas the deviations between simulations can be 15 

considerably larger in the smaller tributaries far from the calibration locations.  
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Figure 2. Predicted (dots) and simulated specific runoff (pixels) for one day lead time for a region on both sides of the 

German/Polish border (red line). 
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Figure 3. Predicted (dots) and simulated specific runoff (pixels) for 10 days lead time for a region on both sides of the 

German/Polish border (red line). 

 

 5 

5. Conclusions 

We have used the EMOS-method for post-processing of runoff predictions from an ensemble forecasting method. The results 

indicate that it is well possible to use top-kriging for interpolating the EMOS-parameters along the river network as long as 

the parameters have been fitted with a method which forces some degree of spatial continuity between the parameters. 

We have also shown that it is possible to use top-kriging for simulation of runoff at uncalibrated locations, using the 10 

variogram and post-processed predictive distributions at the calibration locations. Using these simulations is a different 

approach than interpolating the EMOS-parameters to create uncorrelated predictive distributions for each locations along the 

river network. Such simulations have, as far as we know, not yet been used in forecasting, and the possible usages still need 

further analyses. One important aspect is that the uncertainty of the smaller tributaries will not only be based on 

meteorological uncertainty, as for ensemble modelling with a hydrological model with a single parameter setup, it will also 15 

include the modelling uncertainty.   

We notice that there are still a few issues which have to be further improved in the analyses presented here. First of all, much 

of the theory is developed for variables with a normal distribution. However, runoff usually does not follow a normal 

distribution. We will in the near future analyse the possibilities for using transformations to be able to work with more 
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normalized variables. We did use a lognormal transform for the simulations. However, the way it was done is not well 

founded in geostatistical theory, and will need further improvements. Some of the simulated values in the tributaries are 

extremely large, which can well describe the statistical uncertainty, but maybe not so much the meteorological uncertainty. 

Further comparisons of the simulations here and the pixel results from a distributed ensemble model will be necessary.  

 5 
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