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Abstract. We explore the potential of a multi-criteria selection of donor catchments in the prediction of continuous 

streamflow series by the spatial proximity method. Three criteria have been used: (1) spatial proximity; (2) physical 

similarity; (3) stream gauging network topology. An extensive assessment of our spatial proximity method variant is made 10 

on a 149 catchment-data set located in the Rhine-Meuse catchment. The competitiveness of the method is evaluated against 

spatial interpolation of catchment model parameters with ordinary kriging. We found that the spatial proximity approach is 

more efficient than ordinary kriging. When distance to upstream/downstream stream gauge stations is considered as a second 

order criterion in the selection of donor catchments, an unprecedented level of efficiency is reached for nested catchments. 

Nevertheless, the spatial proximity method does not take advantage from physical similarity between donor catchments and 15 

receiver catchments due to the low overlapping between hydrological cousins and physical cousins of receiver catchments. 

1 Introduction 

Because quantitative hydrological information contribute to the understanding of short and medium-term fluctuations in 

pollutants concentrations recorded in river flows (e.g. Burt et al., 2010), there is a strong demand to reconstruct continuous 

flow time series at ungauged pollution-control sites for short (i.e. up to 15 days) and medium (i.e. up to 180 days) lead times, 20 

before and after the river water sampling has occurred. The best way to handle this problem would be to set up a coordinated 

monitoring network in order to get continuous streamflow series at the point where water quality data are collected. 

Unfortunately, different brakes like financial costs, logistics and most often diverging interest between water flow managers 

prevent the design of such a coordinated data-acquisition network. Therefore, rainfall-runoff modelling strategies can be 

viewed as surrogate models for reconstructing and simulating continuous flow time series at ungauged pollution control-25 

sites. In the French part of the Rhine-Meuse catchment, we made different attempts to produce daily streamflow series 

through regionalisation of catchment model parameters (Drogue and Plasse, 2014; Plasse et al., 2014). In the worst case, 

where no hydrological information is available at the point of interest, we came to the conclusion that, in our temperate non 

7th International Water Resources Management Conference of ICWRS,
18–20 May 2016, Bochum, Germany, IWRM2016-71-1



 

 

 

2 

 

Mediterranean area, the spatial proximity method is the best approach to solve the regionalisation problem of hydrograph 

prediction provided for the hydrological network is sufficiently dense (i.e. 1 station per 250 km²). But our results have also 

shown that there is still a considerable room for progress in reducing the prediction error in such hydrological information at 

ungauged catchments. For that reason and also because there is an important part of nested catchments in our catchment-data 

set, we test a variant of the spatial proximity approach where the donor catchments are not only selected according to their 5 

spatial proximity but also according to their physical similarity and gauging network connectivity from the receiver 

catchment.  

1 Setting the scene: study area and datasets  

1.1 Study area 

The investigated territory corresponds to the French part of the Rhine-Meuse catchment (North-Eastern part of France). The 10 

presence of the Vosges Mountains induces climatic gradients among highest of France. Considering the weak influence of 

snow on the hydrological regime of the upstream mountain rivers, the snow component is not taken into account in the 

regionalisation study reported in this paper. 

1.2 Datasets 

We split the entire period of observations (1990-2002) into two periods: from 1 January 1990 to 31 December 1995 and from 15 

1 January 1996 to 31 December 2002. Warm up periods of one year has been used in both cases. For the efficiency 

estimation of the catchment model regionalisation we used the second sub-period as a confirmatory period. 

1.2.1 Catchment-data set 

We made an extensive assessment of our regionalisation scheme on a dense stream gauging network (approximately 1 

gauging station for 250 km²) comprising 149 reliable stations gauging non-regulated rivers and providing daily streamflow 20 

values validated on the target period 1990-2002. More than half of these stations are also dedicated to water quality 

monitoring. The drainage areas lie between 5 and 11500 km². The catchment set includes 40 % of nested catchments (i.e. 60 

% of adjacent catchments). The territory covered by our catchment sample is approximately 38,000 km². This accounts for 

15% of the total drainage area of the Rhine-Meuse catchment (≈ 200,000 km ² at the outlet). 

1.2.2 Climate forcings and rainfall-runoff model 25 

In addition to streamflow data, we also collected daily precipitation and potential evapo-transpiration from the SAFRAN 

gridded climatology data. The daily lumped GR4J rainfall–runoff model (Perrin et al., 2003) has been calibrated over the 
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training period (1990-1995) by using the Broyden–Fletcher–Goldfarb–Shanno algorithm (hill climbing optimization 

technique; see Byrd et al., 1995). Parameters have been optimized with the Nash-Sutcliffe coefficient computed on the 

square root of the daily streamflow series (NSsqrtQ). This power transformation makes possible to define a parameter set 

representative of the catchment behaviour on all the streamflow range. The repetition of the split-sample test for all the 

catchment-data set allows setting up a regional library containing 149 vectors of four optimal parameters.  5 

2 How strengthening the spatial proximity approach?  

In a first simulation experiment, we optimized the performance of the spatial proximity approach allowing the output 

averaging option and four geographic neighbours (Plasse et al., 2014). In this basic version of the spatial proximity 

approach, we filter out poorly modelled donor catchments, i.e. the ones having a NSsqrtQ below 0.7 in calibration mode. In 

this study we go one step further by selecting geographic neighbours according to a regional composite rank mixing 10 

elementary ranks related to spatial proximity, physical similarity and stream gauging network topology. The experiment 

design is described in Fig. 1. 

 

Figure 1. Flowchart of the regionalisation scheme applied to our catchment-data set. 

 15 

As for a trully ungauged catchment, streamflow hydrograph is unkown, we apply a method that introduces hydrological 

catchment behaviour in the assessment of catchment physical similarity (Oudin et al., 2010). We compute two catchment 

classifications (a hydrological one and a physical one) where similarity is defined as an Euclidean distance in the catchment 

property space: for the hydrological classification we use seven hydrological signatures calculated on the 1990-2002 period 

(runoff coefficient, lag time, Base Flow Index, slopes of the Flow Duration Curve for the high flow range, the low flow 20 

range and the medium flow range, rising limb density); for the physical classification we use 70 catchment attributes related 
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to climate, geology, land cover, hydrology and morphology and a weighted version of the Euclidean distance for estimating 

the catchment similarity. Then, we sought physical attributes allowing the best matching between both classifications 

according to the Adjusted Rand Index -ARI- (Hubert and Arabie, 1985). We also incorporate the hydraulic connectivity of 

nested catchments in the composite rank calculation (Fig. 1). We proceed in a very simple way: for a target point having 

upstream/downstream neighbour(s), we assign a topological rank to neighbour(s) according to the stream network distance 5 

between the target point and its neighbours. The closest is the gauging station the smallest is the rank. For adjacent stations, 

we add one to the rtopo value of the furthest upstream/downstream neighbour(s) rank value. For an adjacent receiver 

catchment, the topological rank is set to 0. We examine the efficiency of our regionalisation method by jakknife cross 

validation (Fig. 1). As the catchment-data set is quite large, a [-1; 1] bounded version of the NSsqrtQ criterion (called C2M) is 

calculated for efficiency estimation (Mathevet et al., 2006). For sake of robustness evaluation, the GR4J model parameters 10 

are also regionalised by ordinary kriging (OK). The variogram properties of GR4J model parameters are summarized in 

Table 1. As the X2 parameter has no spatial autocorrelation, the median value is used. 

model parameter Definition Variogram model  

X1 (mm) maximal capacity of the production reservoir spherical; range : 100 km; sill : 250 000 mm² 

X3 (mm) capacity of the non linear routing reservoir spherical; range : 37 km; sill : 3100 mm² 

X4 (day) unit hydrograph time base spherical; range : 35 km; sill : 0.25 day² 

Table 1. Variogram models used to interpolate the X1, X3 and X4 GR4J model parameters in the study area. 

3 Results and discussion  

3.1 Which physical attribute(s) of catchment could be used as proxie(s) for hydrological similarity? 15 

The catchment classification based on hydrological signatures leads to nine clusters. The two physical attributes optimizing 

the ARI index are the catchment perimeter and the proportion of Strahler stream order 5 (Table 2). Nevertheless, the 

intermediate value of ARI (0.545) shows that physical catchment characteristics are poor proxies for describing hydrological 

behaviour similarity patterns. 

Iterations Physical attributes Number of 

clusters 

Weights in Euclidean 

distance metric  

Adjusted Rand Index 

(-)  

1 Catchment perimeter 13 1 0.333 

2 Catchment perimeter (CP) + proportion of 

Strahler stream order 5 (SSO5)  

13 CP : 0.5 

SSO5  : 0.5 

0.545 

Table 2. Physical attributes maximizing the Adjusted Rand Index (ARI) computed between the classification based on 20 

physical attributes and the classification based on proxies of hydrological behaviour.  
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In order to orient future researches, a focus should be made on hydrological signatures that discriminate the most 

hydrological cousins and physical cousins (Oudin et al., 2010). 

3.2 Overall performance of the multi-criteria spatial proximity approach 

Looking at Fig. 2 we can see that the spatial proximity method produces less prediction error than OK over the confirmatory 

period. An improvement of model hydrograph prediction at ungauged sites could be obtained when using the multi-criteria 5 

selection approach with four donor catchments, especially for well regionalised catchments (Fig. 2). Optimal weights in 

composite rank leading to that result are respectively 1 = 0.8 for rgeo (spatial proximity), 2 = 0.1 for rphys (physical 

similarity) and 3 = 0.1 for rtopo (distance between upstream/downstream gauging stations). It means that for the considered 

monitoring stream gauge network, physical similarity and network topology have a second order effect in the selection of 

pertinent donor catchments in comparison to Euclidean distance between catchment centroïds. 10 

 

Figure 2. Cumulative distribution functions (CDFs) of GR4J model efficiencies using model parameters regionalised by 

three methods. CDF for at-site calibration efficiencies is also shown. Results are given in validation mode.  

4 Conclusions  

We tested a multi-criteria variant of the spatial proximity approach for daily hydrograph prediction at ungauged sites. Three 15 

criteria were used to choose the neighbours of a target catchment: spatial proximity, physical similarity (conditioned by 

catchment hydrological similarity patterns) and distances between upstream/downstream neighbours for nested catchments. 

No added value comes up from using physical similarity in the selection process of donor catchments. Poorly regionalised 
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catchments do not take advantage from the multi-criteria approach. For well modelled nested catchments, prediction error of 

hydrograph in ungauged conditions could be reduced by prioritizing upstream/downstream neighbours among the closest 

donor catchments. In light of these results, hydrograph prediction over ungauged catchments through catchment model 

regionalisation definitely appears as a learning process.   

 5 
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