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Thomas Singer+, Michael Wagner+, and Niels Schütze+

∗Saxon State Office for Environment, Agriculture and Geology, Department of Water, Soil and Waste, 01109 Dresden

+Institute of Hydrology and Meteorology, Technische Universität Dresden, 01069 Dresden

5

Abstract6

In recent years, the Free State of Saxony (Eastern Germany) was repeatedly hit by both extensive7

riverine flooding, as well as flash flood events, emerging foremost from convective heavy rainfall. Especially8

after a couple of small-scale, yet disastrous events in 2010, preconditions, drivers, and methods for deriving9

flash flood related early warning products are investigated. This is to clarify the feasibility and the limits10

of envisaged early warning procedures for small scale catchments, hit by flashy heavy rain events. Early11

warning about potentially flash flood prone situations (i.e., with a suitable lead time with regard to required12

reaction-time needs of the stakeholders involved in flood risk management) needs to take into account13

not only hydrological, but also meteorological, as well as communication issues. Therefore, we propose14

a threefold methodology to identify potential benefits and limitations in a real-world warning/reaction15

context.16

First, the user demands (with respect to desired/required preparation times, warning products, etc.) are17

investigated. Second, focusing on small catchments of some hundred square kilometers, two quantitative18

precipitation forecasts are spatially and temporally verified. Third, considering the user needs, as well as19

the input parameter uncertainty (i.e., foremost emerging from an uncertain QPF), a feasible, yet robust20

hydrological modeling approach is proposed on the basis of pilot studies with deterministic, data-driven, and21

simple scoring methods. Our contribution delivers a synopsis of the already acquired results for real-world22

(sub-)mesoscale catchments, comprising investigations of the aforementioned three methodological pillars.23

An appropriate approach for deriving hydrological forecasts/prognoses relevant for flash flood early warning24

is concluded from the presented results.25

1 Introduction26

For Saxony, considering the last two decades, the hydrologically most intense and most disastrous events27

occurred in August 2002, August/September 2010, as well as June 2013 (LfULG, 2004, 2013, 2015). Total28

damage for the aforementioned events sums up to 9 billion Euros (ca. 6.1 in 2002, ca. 0.85 in 2010 and29

ca. 2.0 in 2013). Especially in August/September 2010, flashy events in small catchments caused large parts of30

total damages. In this light, the Saxon State Government mandated an independent commission to identify31

suggestions for improving flood risk management actions (Jeschke et al., 2010). One of the commission’s32

demands was to line out the potentials and limits of small-scale flash flood early warning approaches (i.e.,33

based on hydrological forecasts).34
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As the authority responsible for operational flood forecasting and warning, the Saxon Flood Center drafted1

a corresponding project with a preferably holistic view on flood risk management procedures, especially, when2

it comes to small-scale and flashy events. Therefore, a threefold approach is proposed, aiming at (1) the3

assessment of the demands and requirements of potential users of early warning products; (2) the verification of4

driving meteorological data for the targeted spatio-temporal scales; (3) checking the usefulness of a preferably5

broad range of modeling approaches with regard to model skill, robustness, and regional applicability, for small,6

potentially ungauged basins. The paper at hand provides a short overview of the current state of work and7

illustrates a way towards an operational early warning system for small catchments in Saxony.8

2 Methods9

2.1 User Survey10

To investigate the needs and demands of potential users of an envisaged flood early warning system for small,11

fast-responding catchments in Saxony, a quantitative survey was carried out, based on an online questionnaire.12

The questionnaire comprised 15 questions, with 12 multiple-choice questions, two questions with gradually-scaled13

answers, and one question for the submission of verbal comments. Strictly speaking, the survey comprised14

quantitative and qualitative elements. For the sake of brevity, the full questionnaire is not presented herein but15

can be found in Philipp et al. (2015).16

The surveyed sample was selected systematically (i.e., not randomly) and included all legal users (i.e.,17

according to the Saxon Flood Alarm Bylaw; HWMO, 2014) of Flood Center products (n = 578) who were18

reachable via email to be invited for participating in the online survey (n = 491). The interviewee affiliation19

spanned administration/authorities at local/district/state level, fire departments and civil protection agencies,20

as well as the private sector. It has to be stated that the interviewees did not represent lay people since they21

participate in the official flood management procedures on a legal and regular basis.22

The survey results were evaluated using descriptive statistics and subgroup analyses by means of contingency23

tables. Therefore, given answers were investigated in an user-group specific manner, i.e., more than one24

variable is considered at a time (multivariate approach). A question to address was whether specific user25

groups answered differently or not. Such an effect can be induced by strongly differing sizes of sub-samples or26

indicate a truly diverse response behavior. The literature suggests χ2-based dependency measures to clarify27

such questions (Sachs, 1999). For the present study, Cramér’s V and χ2-based p-values were used.28

2.2 Verification of QPFs29

The verification of meteorological data comprised two Quantitative Precipitation Forecasts (QPFs) which30

are operationally used by the Saxon Flood Center. The investigated QPFs are the deterministic numerical31

weather prediction COSMO-DE product (Baldauf et al., 2011) and the probabilistic “Quantile Forecast” (QF)32

for 16 specific areas in Saxony (cf. Figure 1), issued by German Met Service’s Regional Center in Leipzig.33

The two QPFs are compared against a Quantitative Precipitation Estimate (QPE), emerging from rain gauge34

data, which was spatially interpolated (Ordinary Kriging) to derive areal precipitation estimates. Additionally,35

weather radar data (Met Service’s RADOLAN-RW product; Sacher et al., 2011) was employed as another QPE36

reference. A comprehensive overview of the herein considered QPFs and QPEs is given in Table 1.37

The Quantile Forecast represents a probabilistic, qualitative expert estimate of areal precipitation for the38

next 36 hours and consists of three values/quantiles per forecasting time step. Since the forecast is issued39

for 16 specific areas in Saxony (i.e., river catchments with topographic partitioning according to elevation),40

verification was based on the comparison of areal rainfall for the mentioned 16 regions, and spanned a period41

from 04/2011 to 06/2014.42
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Table 1: Overview of the considered QPF and QPE products.

Product Provider
QPF/

QPE
Type

Temporal

resolution

Spatial

resolution

Lead

time

Update

cycle

COSMO-DE

German

Met Service

(DWD)

QPF

Deterministic

numerical weather

prediction (gridded)

1 h 2.8 x 2.8 km 21/27∗ h 3 h

Quantile

Forecast (QF)

DWD-

RWB LZ+
QPF

Probabilistic

forecast of mean

areal precipitation

6/12 h−
Forecast regions

from ca. 600 to

2,700 km2

36 h 12 h

Interpolated

rain gauge data
DWD QPE

89 stations for the

area of Saxony plus

25 km buffer

1 h 1 x 1 km∼ — 1 h

RADOLAN-RW DWD QPE

Rain gauge adjusted

weather radar

estimate (gridded)

1 h 1 x 1 km — 1 h

∗27 hours since 01.30.2014 15:00 UTC. +DWD’s Regional Service Center in Leipzig. −Product comprises two consecutive 6-hour

and two further 12-hour intervals. ∼Data gridded via Ordinary Kriging.
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Figure 1: Overview map indicating the areal domain of the Quantile-QPF for Saxony (16 regions; e.g.,“FM-O3”
indicates the parts of the Freiberger Mulde catchment above 300 m.a.s.l.). The area of the regions ranges
between approximately 600 and 2,700 km2. Furthermore, the hydrological pilot areas (cf. Section 2.3) are
shown. Gauss conformal projection with reference at 12° E (Zone 4).
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Figure 2: Typical work flow for deriving threshold-exceedance based skill scores, e.g., False Alarm Rate,
Probability Of Detection (FAR, POD) or combined products, e.g., Receiver Operating Characteristic (ROC)
curves and Area Under Curve (AUC) values.

The comparison of areal rainfall was based on consecutive 6-hour sums, starting from 06:00 and 18:00 UTC.1

6-hour sums were chosen to accommodate the most coarse temporal resolution of the investigated products,2

given by the Quantile-QPF. The product features areal rainfall totals (for the 16 forecasting regions) with 0.9,3

0.5, and 0.1 exceedance probability and two consecutive 6-hour and two further 12-hour intervals. The forecast4

is updated twice a day (at 06:00 and 18:00 UTC). However, a main task of the herein presented verification5

was to evaluate the quality of this product against highly resolved numerical weather prediction output (i.e.,6

COSMO-DE).7

A QPF/QPE comparison typically employs a number of tools and methods (Jolliffe and Stephenson, 2012),8

ranging from simple diagnostic (e.g., time series and totals comparisons, residual and bias analyses, scatter and9

frequency plots) to integral, quantitative methods. Analyses are often based on threshold-oriented contingency10

table evaluation and deliver typical verification/skill scores, e.g., False Alarm Rate, Probability Of Detection11

(FAR, POD) or combined products, e.g., Receiver Operating Characteristic curves (ROC curves; Fawcett, 2006).12

A prototypical work flow of threshold-oriented skill assessment is shown in Figure 2. More detailed information13

on the herein employed QPF/QPE verification methodology (as well as concerning the results) can be obtained14

from Kerl and Philipp (2015).15

2.3 Hydrological Modeling Approaches16

Three different hydrological modeling techniques were implemented and applied for three pilot areas in Saxony17

(cf. Figure 1): first, a semi-distributed deterministic model (DeHM), second, a data-driven, neural-network model18

(DaHM) and, third, a simple classification model, based on the scoring of flood-relevant parameters (ScoHM).19

Subsequently, the modeling concepts and their application (with regard to calibration, data assimilation, etc.)20

are briefly described. Only snow-free conditions were regarded for model development and application.21

Deterministic hydrological model (DeHM)22

DeHM model’s topology is based on a nodal representation of sub-catchments. Model calculations are23

performed for each node, whereas the calculation sequence is determined by the topological order of nodes;24

each model node holds all relevant parameters. Runoff generation is portrayed by the SCS Curve Number25

method. Runoff concentration is either modeled via an arbitrarily long cascade of linear reservoirs or via26

response-function convolution. Channel routing is described with either a time-lag function, a cascade of linear27

reservoirs, Muskingum method, or a translation-diffusion model. Since there are a number of multi-purpose28

and flood-retention reservoirs in the pilot areas, flood control was specifically included in the model.29
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Table 2: ScoHM scoring system.

Parameter description Upper parameter limits Sub-score range

Mean catchment slope 0.02/0.08/0.14/0.20/∞ 0 to 4

Baseline susceptibility
Catchment shape factor∗ 0.20/0.40/0.60/0.80/1.00 0 to 4

Degree of surface sealing 0.05/0.20/0.35/0.50/1.00 0 to 4

Proportion of fast runoff components+ 0.10/0.23/0.37/0.50/1.00 0 to 4

SPI over the last 30 days
− −3/−2/−1/0/1/2/∞ −3 to 3

Dynamic susceptibility∼ Precipitation sum over the last 7 days Sub-score percentiles& 0 to 4

Precipitation sum over 12/24/48 hrs# based on actual data from 0 to 4

Linear reservoir outflow§ 01/2010 to 09/2015 0 to 4

Total susceptibility score −3 to 31
∗Catchment being more circular for values near unity. +According to Peschke et al. (1999). −SPI values rounded to integers. ∼In

contrast to Collier and Fox (2003), snow-specific dynamic sub-scores were not considered. #Only highest sub-score is considered.
§Linear reservoir being charged with hourly precipitation. &Percentiles: 75th/90th/95th/99th/100th.

Model calibration was based on event-specifically masked hydrograph data and employed a mixed performance1

criterion after Li et al. (2015). Data assimilation/state updating was realized with a simplified Kalman filter2

with error variances, following Blöschl et al. (2014). More details on the DeHM model and its application can3

be found in Schwarze et al. (2015).4

Data-driven hydrological model (DaHM)5

DaHM is an artificial neural network model, employing a feedforward two-layer perceptron (Hagan et al.,6

2002). The input vector features flow, rainfall, and cumulative rainfall data with the general 15-element form7

I : [Qt−[0...3];Pt−[0...3];P c
t−[0...6]] (with hourly values of flow Q, rainfall P , and cumulative rainfall P c). Adding8

to that, and depending on the considered lead time in the forecasting case, inputs for the rainfall forecast were9

included, e.g., for forecasting Qt+6, the input Pt+6 is added, for Qt+12, Pt+6; t+12, respectively, whereas the10

Pt+x values portray specific QPF lead times.11

The Levenberg-Marquardt algorithm was applied for network training, whilst allowing the number of hidden12

neurons range from 3 to 13. Event-wise masked hydrograph data and hourly areal rainfall were used for training.13

15 training runs were evaluated for each specific hidden-neuron configuration and the best network was selected.14

Schwarze et al. (2015) give more details on the training and validation of the DaHM model.15

Scoring model (ScoHM)16

The basic concept of scoring models is—in contrast to deterministic and data-driven concepts—not to simulate17

or reproduce the development of process variables (e.g., flow) but to empirically determine the current and/or18

expected further state of a variable by means of a simple classification-based, additive assessment of influencing19

parameters (i.e., scoring). The employed scoring model resembles the Flooding Susceptibility Assessment20

approach proposed by Collier and Fox (2003). The method is twofold; first, a baseline susceptibility is derived,21

based on morphological features, e.g., slope, land cover, etc. Second, a time-variant, dynamic susceptibility is22

calculated, incorporating the Standardized Precipitation Index (SPI; Edwards and McKee, 1997), cumulative23

precipitation measures, and the response of a linear reservoir being charged with hourly precipitation.24

The scoring is carried out according to Table 2; baseline sub-scores and the SPI sub-score are mapped linearly,25

according to the range of each respective morphological feature. For the remaining dynamic susceptibility26

sub-scores, frequency analyses were applied to deliver specific percentiles that are in turn connected to specific27

sub-score values, e.g., P-sums within the 75th–90th percentile-range of the data result in a sub-score of 1, etc.28

The method requires only one effective parameter, namely the recession constant of the incorporated linear29

reservoir, which was manually calibrated to a global value of 8 h.30
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In contrast to the DeHM and DaHM models, the ScoHM approach does not rely on observed flow data,1

neither in the sense of directly including auto-correlative signals, as applies for the data-driven DaHM model (in2

form of the Qt−x inputs), nor indirectly via data assimilation/state updating, as applies for the deterministic3

DeHM model. Therefore, the ScoHM approach might offer a robustly transferable methodology towards4

prediction in small, ungauged basins.5

3 Results6

3.1 User Survey7

Herein, the most important results of the user survey (cf. Section 2.1) are presented in a concise manner;8

a more detailed presentation can be found in Philipp et al. (2015). The response rate was 76 % (n = 373),9

which is extraordinarily high (with 69 % or n = 339 completely answered questionnaires) and is mainly a result10

of the systematic sampling (cf. Section 2.1). For 11 out of 15 questions, user-group specific replies were11

not distinguishable in a statistical sense. The outcomes of the statistical analysis of the survey data can be12

summarized as follows:13

Information and pathways: (1) The interviewees request selective, event-related information or inform14

themselves on an event-related basis (rather than on a regular basis). (2) 37 % of all users trust that a more15

regular and more frequent distribution of warning products will provide increased security for their management16

decisions, even if the meteorological and hydrological trend remains unchanged. (3) All groups, except the17

group“private persons”, attach greatest importance to the internet in contrast to other communication channels18

(e.g., fax, video text, voice mail). The official flood warnings issued by fax or email are also used for information19

by a majority of users. (4) A high availability of warning services and products is deemed important by a vast20

majority of users, especially in the case of flooding.21

Flood warning products: (1) A short-termed, but more precise warning is preferred over a long-term22

estimation, carrying presumably more uncertainty. (2) The majority of users (> 65 %) are interested in receiving23

a possibly reliable forecast of the peak water level. 45 % of users would appreciate being informed about24

the peak timing. (3) Most popular products for fulfilling early warning purposes are forecasted hydrographs25

with uncertainty bands (about 50 % of all persons interviewed), as well as a catchment-oriented classification26

products (“traffic light”, approximately 40 % of all persons interviewed).27

Lead time: (1) The minimum required lead times amount to ≤ 3 h (9 % of users), ≤ 6 h (27 %), ≤ 12 h28

(50 %), ≤ 24 h (83 %), ≤ 72 h (98 %). (2) A lead time of ≤ 12 h is deemed to be adequate by a slim majority29

of users in small catchments (< 200 km2).30

Miscellaneous: (1) The interviewed user groups vary significantly in terms of the replies given when31

being asked for the requested updating frequency of flood warnings and their communication via email or fax.32

(2) Furthermore, the interviewees of various user groups specifically replied to the questions concerning the33

quality of current products and the quality of the work of the Saxon Flood Center. (3) Moreover, no significant34

differences in the response behavior of the various user groups could be identified by statistical means.35

3.2 Verification of QPFs36

The investigated QPFs (COSMO-DE and Quantile Forecast) were compared against areal precipitation estimates,37

based on gridded rain gauge data, and, additionally, a radar-based QPE (RADOLAN-RW product). First,38

threshold exceedance frequencies were derived from the QPEs and QPFs (cf. Figure 3). COSMO-DE delivers39

exceedance frequencies which are close to the ones derived from rain gauge data. RADOLAN underestimates40

the threshold exceedance frequencies from rain gauge data, whereas the chance of underestimation is higher at41

lower thresholds, and vice versa. Threshold exceedances drawn from the Quantile Forecast’s 50th and 10th42
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Figure 3: Threshold exceedance frequencies of 6-hourly areal precipitation sums for QPEs (gridded rain gauge
data, RADOLAN-RW) and QPFs (COSMO-DE, Quantile Forecast) from 04/2011 to 06/2014. The bars show
the median of exceedance frequencies for the respective precipitation products for the 16 forecast areas (cf.
Figure 1). The whiskers illustrate the minimum and maximum values.

percentiles are generally more frequent than the observed ones (i.e., from rain gauge data), whereas the 90th1

percentile underestimates observed frequencies.2

Second, for a more in-depth view at the regarded QPFs, the contingency-based measures POD and FAR3

were evaluated (Figures 4 and 5) down to thresholds of 0.1 mm/6 h. Due to product-specific conventions of the4

Quantile Forecast (areal precipitation sum < 4.5 mm/6 h is set to zero), the results are constant for thresholds5

< 4.5 mm. Following Winterrath et al. (2012), a minimum of 10 observed or predicted threshold exceedances6

should be required for the calculation of skill scores. Therefore, POD and FAR were not always evaluated for7

higher thresholds. Generally, higher precipitation thresholds are connected with lower POD and lower FAR8

values, and vice versa. Furthermore, for POD, the skill variance amongst the forecast areas increases with9

increasing precipitation thresholds. POD = FAR indicates a boundary threshold for which the considered QPF10

has no predictive benefit anymore. This boundary is not reached for both QPFs, concerning the investigated11

thresholds. Finally, for the regarded QPFs, COSMO-DE exhibits the best performance with regard to POD/FAR12

relations and skill variance.13

3.3 Hydrological Model Validation14

The three presented models (DeHM, DaHM, ScoHM) were applied for the three aforementioned pilot areas15

(cf. Figure 1). The herein investigated QPEs (gridded rain gauge data and RADOLAN data) and QPFs16

(COSMO-DE and Quantile Forecast; cf. Sections 2.2 and 3.2) were used as meteorological drivers (for the17

current state of work, on the QPF side, ScoHM was charged with the Quantile Forecast only). Validation18

for the DeHM and DaHM models is straightforward since modeled hydrographs are simply compared against19

observed ones. Model evaluation is a bit more delicate for the ScoHM results, since the ScoHM output (i.e.,20
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indicate the spread of FAR over the 16 forecast areas.
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dimensionless scores) does only qualitatively correlate with observed flow values. Therefore, a quantile-mapping1

procedure (Piani et al., 2009) was applied to relate thresholds of Q with corresponding total-score values.2

Model performance was (besides other integral measures as RMSE, NSE, etc.) evaluated on the basis of3

threshold-oriented contingency table analyses, i.e., it is checked if modeled output matches/exceeds a certain4

observed flow level or not. More specifically, the variation of threshold values delivers a set of corresponding5

skill scores, e.g., POD values with corresponding FARs. These POD/FAR tuples were used to establish6

catchment-specific Receiver Operating Characteristic curves (Fawcett, 2006). The curves were finally integrated7

to deliver the so-called Area Under Curve (AUC), with values near unity for a near-perfect model prediction and8

near 0.5 for no predictive skill (cf. Figure 2 and Section 2.2). For brevity, results are presented and discussed9

for the Mandau catchment only, featuring four river gauges.10

Generally, different combinations of lead times and update cycles (i.e., the time after which a new forecast is11

calculated) were investigated; herein, results for an update cycle length of 12 h are presented. Event-specifically12

masked, hourly hydrograph data and hourly rainfall observations were used during model validation. Data13

which were used in model calibration/training were not used for validation purposes. Calibration/training14

data originated from the period of 2006 to 2011 (11 events), validation data from 2010 to 2015 (10 events).15

Figure 6 comprehensively shows the validation results for four gauges within the Mandau pilot area. For the16

Quantile Forecast, results for the 50th percentile are exemplarily shown.17

For the smallest sub-catchment, Niederoderwitz (29 km2), DeHM performs best; for the three larger sub-18

catchments, DaHM features the highest Area Under Curve values. However, DeHM and DaHM performance19

trends to decrease with increasing lead time; ScoHM features a quite constant/robust skill development. The20

reason might be that for shorter lead times (6 h) the auto-correlative Qt−x signal, included directly or indirectly21

in the DeHM and DaHM model, leads to improved performance. This does not apply for the ScoHM results,22

since the model does not rely on observed flow data. Generally, ScoHM exhibits Area Under Curve values23

around 0.8 which indicates a good overall predictive skill, foremost, when keeping in mind the generality and24

straightforwardness of the model approach.25

It can be seen from Figure 6 that QPE data delivers highest predictive skill with a tendency of RADOLAN26

outperforming the rain gauge data. Predictive skill under QPF data (Quantile Forecast and COSMO-DE) is27

mostly lower. For different QPFs as drivers, resulting skills do not differ greatly. Apparently, the observed28

differences in QPF quality (cf. Section 3.2) do not systematically impact hydrological model skill. Furthermore,29

it is important to say that validation was carried out on the basis of hourly values; a more general evaluation, e.g.,30

comparing only the highest values within a specific temporal window (e.g., six hours), would yield considerably31

higher skill scores.32

Finally, it should be stated that the results for the other investigated pilot area are consistent with the herein33

presented findings for the Mandau pilot region when focusing on catchments with areas of up to 200 km2. For34

larger scales, when wave translation and diffusion impact flood expression, the deterministic and data-driven35

models outperform the scoring approach since it does not account for such processes.36

4 Conclusions and Outlook37

In this study, user demands, driving data, and hydrologic modeling techniques were evaluated within a real-word38

application context in order to illustrate a way towards a flash flood early warning strategy for (sub-)mesoscale39

catchments in Saxony. First, the results suggest that the majority of potential users of flood warnings would40

be satisfied with forecasting lead times of up to 24 hours and that users are foremost interested in predicted41

peak water/alarm levels (rather than peak timing). Second, on the basis of meteorological verification results,42

highly resolved numerical weather prediction data seem to offer the best predictive skill, compared to more43

general, areally integrated products. Third, differences in the quality of meteorological driving data do not44
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Figure 6: Results of hourly, threshold-oriented evaluation for DeHM, DaHM and ScoHM output in the Mandau
pilot area, based on Area Under Curve values. Lead times range from 6 to 36 hours, update cycle is 12 hours.
OM: ombrometer data (i.e., gridded rain gauge data); RADOLAN: QPE from weather radar scans; QF-50:
50th percentile of Quantile Forecast; COSMO-DE: numerical weather prediction output. Skill for DeHM at a
lead time of zero is based on true model output after assimilation/updating and can be slightly smaller than
unity (e.g., apparent for Großschönau 2).

greatly influence hydrological model skill. Fourth, a clear statement on the superiority of one hydrological1

model over another cannot be made.2

In fact, if simple classification models would be sufficient to satisfy warning needs (e.g., providing the3

information whether or not a specific threshold is likely to be exceeded in the next forecasting interval), results4

show that such a modeling approach (i.e., ScoHM) performs with favorable skill, compared to more sophisticated5

modeling techniques, and without introducing cumbersome parameter estimation problems and limited (DeHM)6

or even nonexistent (DaHM) regional transferability. However, overall forecasting skill always decreases with7

increasing randomness of driving events and conditions, i.e., the more rare/focused/intense the flood-causing8

processes and/or the longer the lead time, the smaller the chance of correct detection/warning.9

Further research is currently carried out regarding the statewide implementation and comparative evaluation10

of the herein considered approaches to gain more insight into the dependencies of meteorological drivers,11

hydrological models, spatio-temporal scaling effects, and regional transferability. Meteorological verification12

will be carried out for smaller spatio-temporal scales and with a temporally extended data set. Additionally,13

the set of QPFs will be extended to German Met Service’s 21-member ensemble product, COSMO-DE-EPS.14

Thus, allowing a statewide, comprehensive probabilistic verification and validation of the presented hydrological15

models.16
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