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Abstract6

In recent years, the Free State of Saxony (Eastern Germany) was repeatedly hit by both extensive7

riverine flooding, as well as flash flood events, emerging foremost from convective heavy rainfall. Especially8

after a couple of small-scale, yet disastrous events in 2010, preconditions, drivers, and methods for deriving9

flash flood related early warning products are investigated. This is to clarify the feasibility and the limits10

of envisaged early warning procedures for small scale catchments, hit by flashy heavy rain events. Early11

warning about potentially flash flood prone situations (i.e., with a suitable lead time with regard to required12

reaction-time needs of the stakeholders involved in flood risk management) needs to take into account13

not only hydrological, but also meteorological, as well as communication issues. Therefore, we propose14

a threefold methodology to identify potential benefits and limitations in a real-world warning/reaction15

context.16

First, the user demands (with respect to desired/required preparation times, warning products, etc.) are17

investigated. Second, focusing on small catchments of some hundred square kilometers, two quantitative18

precipitation forecasts (including probabilistic QPFs) are spatially and temporally verified. Third, considering19

the user needs, as well as the input parameter uncertainty (i.e., foremost emerging from an uncertain20

QPF), a feasible, yet robust hydrological modeling approach is proposed on the basis of pilot studies with21

deterministic, data-driven, and simple scoring methods. Our contribution delivers a synopsis of the already22

acquired results for real-world (sub-)mesoscale catchments, comprising investigations of the aforementioned23

three methodological pillars. An appropriate approach for deriving hydrological forecasts/prognoses relevant24

for flash flood early warning is concluded from the presented results.25

1 Introduction26

For Saxony, considering the last two decades, the hydrologically most intense and most disastrous events27

occurred in August 2002, August/September 2010, as well as June 2013 (LfULG, 2004, 2013, 2015). Total28

damage for the aforementioned events sums up to 9 billion Euros (ca. 6.1 in 2002, ca. 0.85 in 2010 and29

ca. 2.0 in 2013). Especially in August/September 2010, flashy events in small catchments caused large parts of30

total damages. In this light, the Saxon State Government mandated an independent commission to identify31

suggestions for improving flood risk management actions (Jeschke et al., 2010). One of the commission’s32

demands was to line out the potentials and limits of small-scale flash flood early warning approaches (i.e.,33

based on hydrological forecasts).34
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As the authority responsible for operational flood forecasting and warning, the Saxon Flood Center (SFC)1

drafted a corresponding project with a preferably holistic view on flood risk management procedures, especially,2

when it comes to small-scale and flashy events. Therefore, a threefold approach is proposed, aiming at (1) the3

assessment of the demands and requirements of potential users of early warning products; (2) the verification of4

driving meteorological data for the targeted spatio-temporal scales; (3) checking the usefulness of a preferably5

broad range of modeling approaches with regard to model skill, robustness, and regional applicability, for small,6

potentially ungauged basins. The paper at hand provides a short overview of the current state of work and7

illustrates a way towards an operational early warning system for small catchments in Saxony.8

2 Methods9

2.1 User Survey10

To investigate the needs and demands of potential users of an envisaged flood early warning system for small,11

fast-responding catchments in Saxony, a quantitative survey was carried out, based on an online questionnaire.12

The questionnaire comprised 15 questions, with 12 multiple-choice questions, two questions with gradually-scaled13

answers, and one question for the submission of verbal comments. Strictly speaking, the survey comprised14

quantitative and qualitative elements. For the sake of brevity, the full questionnaire is not presented herein but15

can be found in Philipp et al. (2015).16

The surveyed sample was selected systematically (i.e., not randomly) and included all legal users (i.e.,17

according to the Saxon Flood Alarm Bylaw; HWMO, 2014) of SFC products (n = 578) who were reachable18

via email to be invited for participating in the online survey (n = 491). The interviewee affiliation spanned19

administration/authorities at local/district/state level, fire departments and civil protection agencies, as well as20

the private sector. It has to be stated that the interviewees did not represent lay people since they participate21

in the official flood management procedures on a legal and regular basis.22

The survey results were evaluated using descriptive statistics and subgroup analyses by means of contingency23

tables. Therefore, given answers were investigated in an user-group specific manner, i.e., more than one24

variable is considered at a time (multivariate approach). A question to address was whether specific user25

groups answered differently or not. Such an effect can be induced by strongly differing sizes of sub-samples or26

indicate a truly diverse response behavior. The literature suggests χ2-based dependency measures to clarify27

such questions (Sachs, 1999). For the present study, Cramér’s V and χ2-based p-values were used.28

2.2 Verification of QPFs29

The verification of meteorological data comprised two Quantitative Precipitation Forecasts (QPFs) which are30

operationally used by the SFC. The investigated QPFs are the deterministic Numerical Weather Prediction31

(NWP) COSMO-DE product (Baldauf et al., 2011) and the probabilistic “Quantile Forecast” (QF) for 1632

specific areas in Saxony (cf. Figure 1), issued by DWD’s Regional Service Center in Leipzig. The two QPFs33

are compared against a Quantitative Precipitation Estimate (QPE), emerging from rain gauge data, which34

was spatially interpolated (Ordinary Kriging) to derive areal precipitation estimates. Additionally, weather35

radar data (DWD’s RADOLAN-RW product; Sacher et al., 2011) was employed as another QPE reference. A36

comprehensive overview of the herein considered QPFs and QPEs is given in Table 1.37

DWD’s Quantile Forecast represents a probabilistic, qualitative expert estimate of areal precipitation for38

the next 36 hours and consists of three values/quantiles per forecasting time step. Since the QF is issued39

for 16 specific areas in Saxony (i.e., river catchments with topographic partitioning according to elevation),40

verification was based on the comparison of areal rainfall for the mentioned 16 regions, and spanned a period41

from 04/2011 to 06/2014.42
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Table 1: Overview of the considered QPF and QPE products.

Product Provider
QPF/

QPE
Type

Temporal

resolution

Spatial

resolution

Lead

time

Update

cycle

COSMO-DE DWD QPF
Deterministic NWP

output (gridded)
1 h 2.8 x 2.8 km 21/27∗ h 3 h

Quantile

Forecast (QF)

DWD-

RWB LZ+
QPF

Probabilistic

forecast of mean

areal precipitation

6/12 h−
Forecast regions

from ca. 600 to

2.700 km2

36 h 12 h

Interpolated

rain gauge data
DWD QPE

89 stations for the

area of Saxony plus

25 km buffer

1 h 1 x 1 km∼ — 1 h

RADOLAN-RW DWD QPE

Rain gauge adjusted

weather radar

estimate (gridded)

1 h 1 x 1 km — 1 h

∗27 hours since 01.30.2014 15:00 UTC. +DWD’s Regional Service Center in Leipzig. −Product comprises two consecutive 6-hour

and two further 12-hour intervals. ∼Data gridded via Ordinary Kriging.
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Figure 1: Overview map indicating the areal domain of the DWD Quantile-QPF for Saxony (16 regions; e.g.,
“FM-O3” indicates the parts of the Freiberger Mulde catchment above 300 m.a.s.l.). The area of the regions
ranges between approximately 600 and 2.700 km2. Furthermore, the hydrological pilot areas (cf. Section 2.3)
are shown. Gauss conformal projection with reference at 12° E (Zone 4).
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The comparison of areal rainfall was based on 6-hour sums, starting from 06:00 and 18:00 UTC. 6-hour1

sums were chosen to accommodate the most coarse temporal resolution of the investigated products, given by2

the Quantile-QPF. The QF features areal rainfall totals (for the 16 forecasting regions) for 0.9, 0.5, and 0.13

exceedance probability and two consecutive 6-hour and two further 12-hour intervals. The QF is updated twice4

a day (at 06:00 and 18:00 UTC) and therefore is a rather general QPF product. However, a main task of the5

herein presented verification was to evaluate the quality of this product against highly resolved NWP output6

(i.e., COSMO-DE).7

A QPF/QPE comparison typically employs a number of tools and methods (Jolliffe and Stephenson, 2012),8

ranging from simple diagnostic (e.g., time series and totals comparisons, residual and bias analyses, scatter and9

frequency plots) to integral, quantitative methods. Analyses are often based on threshold-oriented contingency10

table evaluation and deliver typical verification/skill scores, e.g., FAR, POD (False Alarm Rate, Probability Of11

Detection) or combined products, e.g., ROC curves (Receiver Operating Characteristic; Fawcett, 2006). More12

detailed information on the herein employed QPF/QPE verification methodology (as well as concerning the13

results) can be obtained from Kerl and Philipp (2015).14

2.3 Hydrological Modeling Approaches15

Three different hydrological modeling techniques were implemented and applied for three pilot areas in Saxony16

(cf. Figure 1): first, a semi-distributed deterministic model (DeHM), second, a data-driven, neural-network model17

(DaHM) and, third, a simple classification model, based on the scoring of flood-relevant parameters (ScoHM).18

Subsequently, the modeling concepts and their application (with regard to calibration, data assimilation, etc.)19

are briefly described. Only snow-free conditions were regarded for model development and application.20

Deterministic hydrological model (DeHM)21

DeHM model’s topology is based on a nodal representation of sub-catchments. Model calculations are22

performed for each node, whereas the calculation sequence is determined by the topological order of nodes;23

each model node holds all relevant parameters. Runoff generation is portrayed by the SCS Curve Number24

method. Runoff concentration is either modeled via an arbitrarily long cascade of linear reservoirs or via25

response-function convolution. Channel routing is described with either a time-lag function, a cascade of linear26

reservoirs, Muskingum method, or a translation-diffusion model. Since there are a number of multi-purpose27

and flood-retention reservoirs in the pilot areas, flood control was specifically included in the model.28

Model calibration was based on event-specifically masked hydrograph data and employs a mixed performance29

criterion after Li et al. (2015). Data assimilation/state updating was realized with a simplified Kalman filter30

with error variances, following Blöschl et al. (2014). More details on the DeHM model and its application can31

be found in Schwarze et al. (2015).32

Data-driven hydrological model (DaHM)33

DaHM is an artificial neural network model, employing a feedforward two-layer perceptron (Hagan et al.,34

2002). The input vector features flow, rainfall, and cumulative rainfall data with the general 15-element form35

I : [Qt−[0...3];Pt−[0...3];P c
t−[0...6]] (with hourly values of flow Q, rainfall P , and cumulative rainfall P c). Adding36

to that, and depending on the considered lead time in the forecasting case, inputs that bear a rainfall forecast37

were included, e.g., for forecasting Qt+6, the input Pt+6 is added, for Qt+12, Pt+6; t+12, respectively, whereas38

the Pt+x values portray specific QPF lead times.39

The Levenberg-Marquardt algorithm was applied for network training, whilst allowing the number of hidden40

neurons range from 3 to 13. Event-wise masked hydrograph data and hourly areal rainfall were used for training.41
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Table 2: ScoHM scoring system.

Description Parameter bins Sub-score range

Mean catchment slope < 0.02/0.02/0.08/0.14/0.20 0 to 4

Baseline susceptibility
Catchment shape factor∗ < 0.20/0.20/0.40/0.60/0.80 0 to 4

Degree of surface sealing < 0.05/0.05/0.20/0.35/0.50 0 to 4

Proportion of fast runoff components+ < 0.10/0.10/0.23/0.37/0.50 0 to 4

SPI over the last 30 days
− −3/−2/−1/0/1/2/3 −3 to 3

Dynamic susceptibility∼ Precipitation sum over the last 7 days Sub-score percentiles& 0 to 4

Precipitation sum over 12/24/48 hrs# based on actual data from 0 to 4

Linear reservoir outflow§ 01/2010 to 09/2015 0 to 4

Total susceptibility score −3 to 31
∗Catchment being more circular for values near unity. +According to Peschke et al. (1999). −SPI values rounded to integers. ∼In

contrast to Collier and Fox (2003), snow-specific dynamic sub-scores were not considered. #Only highest sub-score is considered.
§Linear reservoir being charged with hourly precipitation. &Percentiles: < 75th/75th/90th/95th/99th.

15 training runs were evaluated for each specific hidden-neuron configuration and the best network was selected.1

Schwarze et al. (2015) give more details on the training and validation of the DaHM model.2

Scoring model (ScoHM)3

The employed scoring model resembles the Flooding Susceptibility Assessment approach proposed by Collier4

and Fox (2003). The method is twofold; first, a baseline susceptibility is derived, based on morphological5

features, e.g., slope, land cover, etc. Second, a time-variant, dynamic susceptibility is calculated, incorporating6

the Standardized Precipitation Index (SPI; Edwards and McKee, 1997), cumulative precipitation measures, and7

the response of a linear reservoir being charged with hourly precipitation.8

The scoring is carried out according to Table 2; baseline sub-scores and the SPI sub-score are mapped linearly,9

according to the range of each respective morphological feature. For the remaining dynamic susceptibility10

sub-scores, frequency analyses were applied to deliver specific percentiles that are in turn connected to specific11

sub-score values, e.g., P-sums within the 75th–90th percentile-range of the data result in a sub-score of 1, etc.12

The method requires only one effective parameter, namely the recession constant of the incorporated linear13

reservoir, which was manually calibrated to a global value of 8 h.14

In contrast to the DeHM and DaHM models, the ScoHM approach does not rely on observed flow data,15

neither in the sense of directly including auto-correlative signals, as applies for the data-driven DaHM model (in16

form of the Qt−x inputs), nor indirectly via data assimilation/state updating, as applies for the deterministic17

DeHM model. Therefore, the ScoHM approach might offer a robustly transferable methodology towards18

prediction in small, ungauged basins.19

3 Results20

3.1 User Survey21

Herein, the most important results of the user survey (cf. Section 2.1) are presented in a concise manner;22

a more detailed presentation can be found in Philipp et al. (2015). The response rate was 76 % (n = 373),23

which is extraordinarily high (with 69 % or n = 339 completely answered questionnaires) and is mainly a result24

of the systematic sampling (cf. Section 2.1). For 11 out of 15 questions, user-group specific replies were25

not distinguishable in a statistical sense. The outcomes of the statistical analysis of the survey data can be26

summarized as follows:27

Information and pathways: (1) The interviewees request selective, event-related information or inform28

themselves on an event-related basis (rather than on a regular basis). (2) 37 % of all users trust that a more29
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regular and more frequent distribution of warning products will provide increased security for their management1

decisions, even if the meteorological and hydrological trend remains unchanged. (3) All groups, except the2

group“private persons”, attach greatest importance to the internet in contrast to other communication channels3

(e.g., fax, video text, voice mail). The official flood warnings issued by fax or email are also used for information4

by a majority of users. (4) A high availability of warning services and products is deemed important by a vast5

majority of users, especially in the case of flooding.6

Flood warning products: (1) A short-termed, but more precise warning is preferred over a long-term7

estimation, carrying presumably more uncertainty. (2) The majority of users (> 65 %) are interested in receiving8

a possibly reliable forecast of the peak water level. 45 % of users would appreciate being informed about9

the peak timing. (3) Most popular products for fulfilling early warning purposes are forecasted hydrographs10

with uncertainty bands (about 50 % of all persons interviewed), as well as a catchment-oriented classification11

products (“traffic light”, approximately 40 % of all persons interviewed).12

Lead time: (1) The minimum required lead times amount to ≤ 3 h (9 % of users), ≤ 6 h (27 %), ≤ 12 h13

(50 %), ≤ 24 h (83 %), ≤ 72 h (98 %). (2) A lead time of ≤ 12 h is deemed to be adequate by a slim majority14

of users in small catchments (< 200 km2).15

Miscellaneous: (1) The interviewed user groups vary significantly in terms of the replies given when16

being asked for the requested updating frequency of flood warnings and their communication via email or fax.17

(2) Furthermore, the interviewees of various user groups specifically replied to the questions concerning the18

quality of current SFC products and the quality of the work of the SFC. (3) Moreover, no significant differences19

in the response behavior of the various user groups could be identified by statistical means.20

3.2 Verification of QPFs21

The investigated QPFs (COSMO-DE and QF) were compared against areal precipitation estimates, based on22

gridded rain gauge data, and, additionally, a radar-based QPE (RADOLAN-RW product). First, threshold23

exceedance frequencies were derived from the QPEs and QPFs (cf. Figure 2). COSMO-DE delivers exceedance24

frequencies which are close to the ones derived from rain gauge data. RADOLAN (QPE) underestimates the25

threshold exceedance frequencies from rain gauge data, whereas the chance of underestimation is higher at lower26

thresholds, and vice versa. The dashed line at an exceedance frequency of 10 indicates that thresholds greater27

than 10 mm/6 h should be evaluated with caution, due to limited data sample sizes (i.e., less than 10 events28

in the investigated period). Due to QF-product related conventions (areal precipitation sum < 4.5 mm/6 h29

is set to zero), the exceedance frequencies of the QF remain constant for thresholds < 4.5 mm. Threshold30

exceedances drawn from the QF’s 50th and 10th percentile are generally more frequent than the observed ones31

(i.e., from rain gauge data), whereas the 90th percentile underestimates observed frequencies.32

Second, for a more in-depth view at the regarded QPFs, the contingency-based measures POD and FAR33

were evaluated (Figures 3 and 4). Again, due to the product-specific convention of the QF, the results for34

the thresholds < 4.5 mm/6 h are identical. Following Winterrath et al. (2012), a minimum of 10 observed or35

predicted threshold exceedances should be required for the calculation of skill scores. Therefore, POD and FAR36

were not always evaluated for higher thresholds. Generally, higher precipitation thresholds are connected with37

lower POD and lower FAR values, and vice versa. Furthermore, the skill variance amongst the forecast areas38

increases with increasing precipitation thresholds. POD = FAR indicates a boundary threshold for which the39

considered QPF has no predictive benefit anymore. This boundary is not reached for both QPFs, concerning40

the investigated thresholds. Finally, for the regarded QPFs, COSMO-DE exhibits the best performance with41

regard to POD/FAR relations and skill variance.42
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Figure 2: Threshold exceedance frequencies of 6-hourly areal precipitation sums for QPEs (gridded rain gauge
data, RADOLAN-RW) and QPFs (COSMO-DE, Quantile Forecast) from 04/2011 to 06/2014. The bars show
the median of exceedance frequencies for the respective precipitation products for the 16 forecast areas (cf.
Figure 1). The whiskers illustrate the minimum and maximum values; the dashed line depicts an exceedance
frequency of 10.
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Figure 3: Probability Of Detection (POD) according to thresholds of areal precipitation sums ranging from
0.1 to 30 mm/6 h for the Quantile Forecast and COSMO-DE from 04/2011 to 06/2014. The box plots indicate
the spread of POD over the 16 forecast areas.
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Figure 4: False Alarm Rate (FAR) according to thresholds of areal precipitation sums ranging from
0.1 to 30 mm/6 h for the Quantile Forecast and COSMO-DE from 04/2011 to 06/2014. The box plots
indicate the spread of FAR over the 16 forecast areas.

3.3 Hydrological Model Validation1

The three presented models (DeHM, DaHM, ScoHM) were applied for the three aforementioned pilot areas2

(cf. Figure 1). The herein investigated QPEs (gridded rain gauge data and RADOLAN data) and QPFs3

(COSMO-DE and QF; cf. Sections 2.2 and 3.2) were used as meteorological drivers (for the current state4

of work, ScoHM was charged with rain gauge data only). Validation for the DeHM and DaHM models is5

straightforward since modeled hydrographs are simply compared against observed ones. Model evaluation6

is a bit more delicate for the ScoHM results, since the ScoHM output (i.e., dimensionless scores) does only7

qualitatively correlate with observed flow values. Therefore, a quantile-mapping procedure (Piani et al., 2009)8

was applied to relate thresholds of Q with corresponding total-score values.9

Model performance was (besides other integral measures as RMSE, NSE, etc.) evaluated on the basis10

of threshold-oriented contingency table analyses, i.e., it is checked if modeled output matches/exceeds a11

certain observed flow/alarm level or not. More specifically, the variation of threshold values delivers a set of12

corresponding skill scores, e.g., POD values with corresponding FARs. These POD/FAR tupels were used to13

establish catchment-specific ROC curves (Fawcett, 2006). The ROC curves were finally integrated to deliver14

AUC (Area Under Curve) values, with AUC near unity for a near-perfect model prediction and near 0.5 for no15

predictive skill. For brevity, results are presented and discussed for the Mandau catchment only, featuring four16

river gauges.17

Generally, different combinations of lead times and update cycles (i.e., the time after which a new forecast is18

calculated) were investigated; herein, results for an update cycle length of 12 h are presented. Event-specifically19

masked, hourly hydrograph data and hourly rainfall observations were used during model validation. Data20

which were used in model calibration/training were not used for validation purposes. Data originated from21

the period of 2010 to 2015. Figure 5 comprehensively shows the validation results at four gauges within the22

Mandau pilot region. For the QF-QPF, results for the 50th percentile are exemplarily shown.23
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Figure 5: Results of hourly, threshold-oriented model evaluation for DeHM, DaHM and ScoHM output in the
Mandau pilot region. Lead times range from 6 to 36 hours, update cycle is 12 hours. OM: ombrometer data
(i.e., gridded rain gauge data); RADOLAN: QPE from weather radar scans; QF-50: 50th percentile of Quantile
Forecast; COSMO-DE: NWP output. Skill for DeHM at a lead time of zero is based on true model output
after assimilation/updating and can be slightly smaller than unity (e.g., apparent for Großschönau 2).

For the smallest sub-catchment, Niederoderwitz (29 km2), DeHM performs best; for the three larger1

sub-catchments, DaHM features the highest AUC values. However, DeHM and DaHM performance trends to2

decrease with increasing lead time; ScoHM features a quite constant/robust AUC development. The reason3

might be that for shorter lead times (6 h) the auto-correlative Qt−x signal, included directly or indirectly in4

the DeHM and DaHM model, leads to improved performance. This does not apply for the ScoHM results,5

since the model does not rely on observed flow data. Generally, ScoHM exhibits AUC values around 0.8 which6

indicates a good overall predictive skill, foremost, when keeping in mind the generality and straightforwardness7

of the model approach.8

It can be seen from Figure 5 that QPE data delivers highest predictive skill; incorporating RADOLAN9

and rain gauge data as precipitation inputs leads to similar skill. Predictive skill under QPF data (QF and10

COSMO-DE) is generally lower. For different QPFs as drivers, resulting skills do not differ greatly. Apparently,11

the observed differences in QPF quality (cf. Section 3.2) do not systematically impact hydrological model skill.12

Finally, it is important to state that validation was carried out on the basis of hourly values; a more general13

evaluation, e.g., comparing only the highest values within a specific temporal window (e.g., 6 hours), would14

yield considerably higher skill scores.15
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4 Conclusions and Outlook1

In this study, user demands, driving data, and hydrologic modeling techniques were evaluated within a real-word2

application context in order to illustrate a way towards a flash flood early warning strategy for (sub-)mesoscale3

catchments in Saxony. First, the results suggest that the majority of potential users of flood warnings would4

be satisfied with forecasting lead times of up to 24 hours and that users are foremost interested in predicted5

peak water/alarm levels (rather than peak timing). Second, on the basis of meteorological verification results,6

highly resolved NWP data seem to offer the best predictive skill, compared to more general, areally integrated7

products. Third, differences in the quality of meteorological driving data do not greatly influence hydrological8

model skill. Fourth, a clear statement on the superiority of one hydrological model over another cannot be9

made.10

In fact, if simple classification models would be sufficient to satisfy warning needs (e.g., providing the11

information whether or not a specific threshold is likely to be exceeded in the next forecasting interval), results12

show that such a modeling approach (i.e., ScoHM) performs with favorable skill, compared to more sophisticated13

modeling techniques, and without introducing cumbersome parameter estimation problems and limited (DeHM)14

or even nonexistent (DaHM) regional transferability. However, overall forecasting skill always decreases with15

increasing randomness of driving events and conditions, i.e., the more rare/focused/intense the flood-causing16

processes and/or the longer the lead time, the smaller the chance of correct detection/warning.17

Further research is currently carried out regarding the statewide implementation and comparative evaluation18

of the herein considered hydrological modeling approaches. Meteorological verification will be carried out19

for smaller spatio-temporal scales. ScoHM will be validated for QPF inputs. Generally, the set of QPFs will20

be extended to DWD’s 21-member ensemble product, COSMO-DE-EPS. Thus, allowing a comprehensive21

probabilistic verification and validation. Another goal is evaluating model-specific extrapolation skill to propose22

a feasible regionalization methodology for deriving threshold-based warnings for ungauged basins.23
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