

High frequency retrieval of total ozone from a ground-based NILU-UV radiometer using a neural network model: validation of the model and evaluation of satellite observations.

M.M. Zempila (1,2), M. Taylor (2), M.E. Koukouli (2), A. Bais (2), C. Lerot (3), K. Frangkos (2), I. Fountoulakis (2), T. Drosoglou (2), F. Gkertsi (2), S. Kazadzis (4), D. Balis (2), and M. van Roozendael (2)

(1) UV-B Monitoring and Research Program, Colorado State University, Fort Collins, United States, (2) Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece, (3) Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium, (4) Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf, Switzerland

The present study presents a new approach to retrieve total ozone at high temporal frequency from surface irradiance measurements performed with a NILU-UV multi-filter radiometer. Time series of 1-minute NILU-UV irradiances at central wavelengths of 302, 312, 320, 340 and 380 nm are used as inputs to a neural network model together with collocated solar zenith angles calculated at Thessaloniki, Greece (40.63E, 22.96N), and the day of the year and as well its sinusoidal components as temporal variables. A decade of coincident Brewer total ozone measurements (TOCs) are used as the target (output) values. A key feature of this Neural Network Model is the use of Singular Spectrum Analysis to denoise all time-series variables. The model is then fed with unseen real (noisy) inputs to estimate TOCs for the decade 2005-2014. Satellite total ozone from the GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura, and GOME2/MetopA GODFIT_v3 Ozone-CCI ESA algorithm at each overpass time are used to provide a comparison for instantaneous TOC estimates produced by the neural network model from NILU-UV irradiances. Furthermore, a collocated CCD spectrometer system provides TOCs values since late 2013 by applying the DOAS technique to the direct sun measurements performed in the UV spectral region of 315-337 nm. Time series analysis and correlation statistics identify the agreement limitations as well as atmospheric, algorithm-related and technical factors responsible for sources of discrepancy among the TOC retrievals.