An improved technique for deriving long-term trends in ozone

R. Damadeo and J. Zawodny
NASA Langley Research Center, Hampton, VA

One of the goals of the recently published Scientific Assessment of Ozone Depletion was to derive the long-term trends in both stratospheric and tropospheric ozone. This was performed, most often, from a multiple linear regression of merged satellite ozone data sets. As mentioned in that report, three factors with a potential major impact were not readily accounted for in those analyses: diurnal variability of ozone, biases between data sets, and long-term drifts between data sets. Herein we discuss an additional complication that is intricately tied to these three factors in this kind of analysis, namely the non-uniform temporal, spatial, and diurnal sampling of the different instruments used for these merged data sets. This non-uniform sampling can have a detrimental impact not only on the regression techniques used to derive long-term trends in ozone but also on other analyses performed to determine diurnal variability or the magnitude of potential biases and drifts between data sets. Additionally, we discuss a recently developed technique that not only accounts for the potential sampling issues, but also the perceived diurnal variability, as well as any potential bias and/or drift between instruments in a single analysis.