

Validation of ACE-FTS ozone and ozone related species

P. E. Sheese (1), K. A. Walker (1,2), C. D. Boone (2), P. Raspollini (3), and T. von Clarmann (4)

(1) University of Toronto, Department of Physics, Toronto, Canada, (2) University of Waterloo, Department of Chemistry, Waterloo, Canada, (3) Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata “Nello Carrara”, Firenze, Italy, (4) Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany

The Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) instrument, on the Canadian SCISAT satellite, observes the Earth’s limb in solar occultation. Atmospheric absorption measurements in the infrared ($750\text{-}4400\text{ cm}^{-1}$) are used to derive volume mixing ratio (VMR) profiles of over 30 trace gas species, including O_3 and many O_3 -related species, ranging from the upper troposphere to the lower thermosphere. ACE-FTS was launched in 2003, and measurements began in February 2004 and are currently ongoing. In this study, we validate the most recent version (v3.5) of the ACE-FTS O_3 data using correlative satellite and ozonesonde data sets. In the lower to mid stratosphere, ACE-FTS ozone is in excellent agreement with correlative World Ozone and Ultraviolet Radiation Center (WOUDC) ozonesonde data, typically within $\pm 2\text{-}4\%$, depending on the coincidence criteria. When comparing with satellite-based limb sounders, ACE-FTS tends to exhibit a $\sim 5\%$ positive bias in the stratosphere and a $\sim 12\%$ positive bias in the stratopause region. We also compare ACE-FTS VMR profiles of CFC-11, CFC-12, and ClONO_2 with collocated data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on the Envisat satellite, and we compare VMR profiles of O_3 -related species with collocated data from other satellite limb sounders.