

QOS2016-92, 2016

Quadrennial Ozone Symposium of the International Ozone Commission

© Author(s) 2016. CC Attribution 3.0 License.

More accurate Pandora total ozone columns by improved laboratory calibration and simultaneous retrieval of effective ozone temperature

M. Tiefengraber (1,2) and A. Cede (1,3)

(1) LuftBlick, Kreith, Austria (martin.tiefengraber@luftblick.at), (2) Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria, (3) NASA/Goddard Space Flight Center, GSFC, Greenbelt, MD, USA

The current operational total ozone column (TO_3) retrievals from Pandora spectrometer systems (Pandoras) in direct sun mode utilize an extraterrestrial reference spectrum from literature and ozone cross sections at a constant temperature. We estimate the accuracy of TO_3 to 10 DU. This number is based on comparisons amongst different Pandoras themselves, comparisons to data from other ground-based instruments (Brewer and Dobson spectrophotometers), and comparisons to satellite data (SCIAMACHY and OMI). The main reasons for the limitations in TO_3 accuracy are: the current operational laboratory calibration does not include #1) absolute calibration or #2) stray light calibration and #3) the algorithm uses a constant effective ozone temperature. #1 typically causes a bias in the data, #2 a deviation at high solar zenith angles, and #3 a seasonal cycle. In this study we describe the planned next version of Pandora total ozone columns and how the accuracy improves compared to the current version.