

Improved water use efficiency significantly contributes to increased primary productivity in a coupled climate-land biosphere simulation under elevated CO₂

K. Kern (1,2), C.H. Reick (2), T. Raddatz (2), and V. Gayler (2)

(1) University Hamburg, Meteorological Institute, Katharina.Kern@zmaw.de, (2) Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg

INTRODUCTION

One of the large uncertainties in projections of future climate is the development of atmospheric CO₂ (Denman et al, 2007). This development will depend very much on the allocation behaviour of plants under rising CO₂ conditions, i.e. on the strength of the so called CO₂ fertilization. CO₂ fertilization acts during photosynthesis primarily by more efficient carboxylation due to reduced photorespiration at elevated CO₂. Besides this direct effect, there is also an indirect one arising as a consequence of increased water use efficiency at enhanced CO₂ levels: Plants typically react with a closure of stomata, leading to a reduction in stomatal conductance by 20-50% for CO₂ doubling (Körner et al. 2007). Thereby, under suitable boundary layer conditions, canopy transpiration is less and soil water content is higher than in the non CO₂-enriched situation. Thus, water availability during the growth season is improved, and the growth season itself may be prolonged. Accordingly, the potential gain in carbon allocation from this indirect effect of CO₂-fertilization should be most expressed under semi-arid conditions. And indeed, for grasslands an inverse relationship between precipitation in the growing season and biomass gain from enhanced CO₂ could be clearly demonstrated (Morgan et al. 2004).

Climate-carbon cycle simulations of the 21st century have been criticised because of an exaggerated productivity of the land biosphere as compared to results from Free Air CO₂ Enrichment (FACE) experiments. E.g. for a doubling of atmospheric CO₂ (with respect to preindustrial level), in the Coupled Carbon Cycle - Climate Model Intercomparison Project (C4MIP) an average enhancement of net primary productivity (NPP) by about 24% was found (range: 6-33%), in contrast to 12-23% found in FACE experiments (Denman et al. 2007). We argue that this critique ignores a fundamental difference between local CO₂-enrichment and worldwide CO₂ increase: Worldwide CO₂ increase is expected to cause large scale changes in the soil-water budget due to enhanced water use efficiency of plants under elevated CO₂. FACE experiments arguably underestimate the consequences of such large scale changes because of their highly local character in an otherwise unchanged surrounding.

METHOD

To estimate the importance of such large scale changes in the soil-water budget for the productivity of the land biosphere we performed global simulations with the land biosphere model JSBACH (Raddatz et al. 2007) coupled to the atmosphere model ECHAM5 (Roeckner et al. 2003) at recent (380 ppm) and elevated (760 ppm) atmospheric CO₂ concentrations. In our simulations CO₂ acts only on the plants, and thereby indirectly through stomata also on the water cycle, but not on the radiation balance of the atmosphere, so that the climate is almost identical for both CO₂ values. The simulation setup is such that we can separate direct (reduced photorespiration) and indirect (changes in soil water budget) contributions to overall CO₂-fertilization.

RESULTS

Most prominent is the CO₂-fertilization in the equatorial zone, where under the wet conditions of the tropics the direct contribution dominates. The peaks in the indirect contributions at about 15° North and around 20° South can be attributed to dry grasslands. Overall, we find that the indirect contributions via increased soil water availability causes about 30% of the global increase in productivity from CO₂-fertilization. This surprisingly large indirect contribution, that can be expected to show up only partially in FACE experiments, may explain the discrepancy

that led to the above mentioned critique of climate-carbon cycle simulations.

Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang, (2007): Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Körner, C., J. Morgan and R. Norby (2007), CO₂ Fertilization: When, where, how much?., In: J.G. Canadell, D.E. Pataki, and L. Pitelka, Terrestrial ecosystems in a changing world, pp. 9-21, Springer, Berlin.

Morgan, J.A., D.E. Pataki, C. Körner, H. Clark, S.J. Del Grosso, J.M. Grünzweig, A.K. Knapp, A.R. Mosier, P.C.D. Newton, P.A. Niklaus, J.B. Nippert, R.S. Nowak, W.J. Parton, H.W. Polley, M.R. Shaw (2004), Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO₂, *Oecologia* 140, 11-25.

Raddatz, T.J., C.H. Reick, W. Knorr, J. Kattge, E. Roeckner, R. Schnur, K.G. Schnitzler, P. Wetzel, J. Jungclaus (2007), Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century?, *Climate Dynamics* 29, 565-579.

Roeckner, E., G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch, G. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, A. Tompkins (2003), The atmospheric general circulation model ECHAM 5. PART I: Model description, Max Planck Institute Meteorology, Report No. 349.