Earth system modeling is currently undergoing an exciting transformation, thanks to new technical capabilities that allow for significant spatial refinement. For the first time, these capabilities allow us to explicitly simulate extreme precipitation and its effects on climate-relevant timescales on a global scale. Thus, new Earth system data from high-resolution modeling approaches offer an exciting foundation for new analyses and research. In our study, we examine the distribution and changes in extreme precipitation from global simulations. We obtained this data from the ICON Earth system model simulations conducted within the nextGEMS project, which aims to create future projections up to the year 2050 with a grid spacing of approximately 5 km. Our analysis focuses on the portion of precipitation contributing to the top ten percent of globally accumulated precipitation. Using the open-source tool tobac we identify and track the resulting precipitation cells over time. Our analysis reveals that warming causes the most extreme precipitation cells to become more intense. At the same time, the data shows a significant decrease in the total number of cells, resulting in fewer, more intense extremes. Finally, we discuss these findings in relation to changes in the spatial distribution of the cells and changed environmental conditions.
How to cite:
Senf, F., Hartog, L., and Jones, W.: Fewer but More Intense: Changes in Extreme Precipitation Cells from Global Kilometer-Scale Climate Modeling, 12th European Conference on Severe Storms, Utrecht, The Netherlands, 17–21 Nov 2025, ECSS2025-254, https://doi.org/10.5194/ecss2025-254, 2025.
Share
Please decide on your access
Please use the buttons below to download the supplementary material or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.