G5.1 | PICO
Space weather modelling. Modelling, dynamics and coupling processes of the Ionosphere and Thermosphere
Convener: Angela Aragon-Angel | Co-conveners: Volker Bothmer, Klaus Börger, Eren Erdogan, Michael Schmidt
PICOs
| Wed, 10 Apr, 10:45–12:30
 
PICO spot 3

The term space weather indicates physical processes and phenomena in space caused by the radiation of energy mainly from the Sun. Solar storms can cause disturbances in positioning, navigation and communication; coronal mass ejections (CME) can affect serious disturbances and in extreme cases damages or even destructions of modern infrastructure. Since the ionosphere and thermosphere are very dynamic and strongly coupled over various spatial and time scales, space weather also influences the orbits of Low-Earth orbiting (LEO) satellite, since thermospheric drag is the largest part of the non-gravitational distortion accelerations within the equation of motion. As a consequence of these interrelations and impacts the Focus Area on “Geodetic Space Weather Research” was implemented under the umbrella of GGOS within the International Association of Geodesy (IAG).

This session will address the recent progress, current understanding, and future challenges of thermospheric and ionospheric research including the coupling processes. Special emphasize is laid on the modelling and forecasting of space weather time series, e.g. EUV-, X-ray radiation and CMEs, and their impact on ionospheric key parameters such as VTEC and electron density. We encourage further contributions to the dynamo electric field, the variations of neutral and ion compositions on the bottomside and topside of the ionosphere, atmospheric gravity waves and TIDs. Furthermore, we appreciate contributions on the equatorial ionospheric electrodynamics and disturbances, including plasma drift, equatorial spread F, plasma bubbles, and resultant scintillations. Another topic is global and regional high-resolution and high-precision modelling of VTEC and electron density maps.

The session is aiming on presentations from observational, theoretical, and modeling studies that improve our understanding and enable a better forecasting capability of ionospheric and thermospheric dynamics.