OS3.1
Ocean biogeochemistry, circulation and climate: recent advances and novel approaches to synthesis and predictions (including OS Division Outstanding ECS Lecture by Peter Landschützer)
Co-organized as BG3.6
Convener: Vincent Rossi | Co-conveners: Maribel I. García-Ibáñez, Siv K Lauvset, Raquel Vaquer-Sunyer
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room L4/5
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X4

The oceanic components of the global cycles of Carbon, Oxygen, Nitrogen and other macro/micronutrients are still not well constrained while they are undergoing unprecedented changes as a result of anthropogenic pressures. Studies of past and present observations as well as of future projections reveal biogeochemical perturbations at all spatio-temporal scales and emphasize complex interactions between ocean physics and biology, all of which are crucial to understand in order to anticipate their implications and future changes for biogeochemical cycling and ocean sustainability. Such knowledge is essential to the development of solutions for the monitoring of the ocean biogeochemical state, for the management of marine living resources and for various research as well as operational applications. This session will bring together researchers that use a range of novel techniques, including observations (e.g. in-situ measurements, remote sensing, global syntheses), experiments (e.g. laboratory and mesocosms), and modeling approaches (e.g. Earth System models, coupled biogeochemical-circulation models, theoretical models) to further improve our understanding of the biological carbon-pump, the biogeochemical cycles in the ocean and their connections to climate, as well as to increase the potential for operational applications.

We welcome contributions (1) dealing with the cycling of Carbon, Oxygen, and Nitrogen in the ocean, dissolved and particulate stoichiometry and elemental ratios, oceanic primary production, ocean acidification, exchange processes at the air-sea interface, role of sea-ice in global biogeochemical cycles and synthesis studies using global compiled data sets; (2) exploring innovative approaches to model-data fusion (e.g. novel methods in data assimilation, assimilation of data from novel in-situ or remote platforms, assimilation of up- or downstream products of ocean color remote sensing), model skill assessment, downscaling from large to regional domains, and case studies of research and operational applications (e.g. HAB prediction, episodic hypoxia, etc…); (3) focusing on a range of spatial scales (regional to global).