ERE6.1
Integrated lab, field and modelling studies in subsurface utilization
Convener: Holger Class | Co-conveners: Sebastian Bauer, Jesús Carrera, Sabine den Hartog, Thomas Kempka, Andreas Busch, Florian Amann, Sarah Eileen Gasda
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room 0.94
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1

Decarbonisation of the energy sector not only relies on subsurface CO2 storage, but also on maximisation of the use of unconventional and renewable energy resources, such as geothermal energy and energy storage. However, many uncertainties exist regarding aspects such as the efficiency and potential of these resources and associated risks like induced seismicity. With this session, we aim to provide an overview of such aspects, highlighting recent advances in our understanding. We welcome contributions describing lab, field and modelling studies relevant for all aspects of geo-energy, including CO2 storage.

Furthermore, this session focuses on modelling of processes associated with geological subsurface utilization, where we have in mind applications related to chemical or thermal energy storage, hydrocarbon production and storage, storage of carbon dioxide etc, all in the context of ensuring a safe and sustainable energy supply.
Such utilization of the geological subsurface, usually related with fluid flow due to injection or production, may induce changes in the recent hydraulic, thermal, mechanical and chemical regimes. Our session aims at the integration of experimental and numerical modelling methods for quantification and prediction of the potential impacts resulting from geological subsurface utilization including:

• Site characterization and determination of site-specific geological and process data.

• Development of static geological models.

• Integration of experimental data into static and dynamic models as well as application of numerical models for experimental design and interpretation.

• Development and benchmarking of modelling tools.

• Model and parameter upscaling techniques.

• Model coupling addressing the interaction of thermal, multi-phase flow, geochemical and geomechanical processes in the fluid-rock system.

• Application of modelling tools for site characterization and prediction of potential impacts.

• Methods for risk assessment and efficient site operation.