GM1.3

In the last 20 years, a major breakthrough in palaeo-environmental research has been the utilisation of 2D and 3D seismic reflection data and its integration with borehole petrophysics and core lithologies: the so-called “geological Hubble”. This step-change in seismic data quality and interpretive techniques has allowed imaging and analysis of the subsurface from the seafloor down to the Moho, and for palaeo-geographies and contemporary processes to be reconstructed across 1D (borehole) to 4D (repeat seismic) scales.

Though many Earth scientists know the basic principles of these subsurface datasets, they are often unaware of the full capability of seismic data paired with borehole data. We hope that this session will provide a window into the exciting and cross-disciplinary research currently being performed using geomorphological approaches, state-of-the-art seismic interpretation, and integrative methodologies.

Submissions are welcome from a range of geological settings, thus, exposing seismic interpreters and non-specialists to differing geological perspectives, the latest seismic workflows, and examples of effective seismic and borehole integration. Examples could include (but are not restricted to), glacigenic tunnel valley complexes, igneous intrusions, submarine landslides, channel and canyon systems, salt tectonics overburden expression, methane hydrates, and subsurface fluid flow, all under the theme of how seismic data are interpreted and how the results are applied (e.g. palaeo-environmental reconstruction, seafloor engineering, or carbon sequestration).

The submissions will highlight the rationale behind the interpretation of seismic geometries and will generate discussions around potential issues of equifinality (i.e. similar seismic geometries arising from different Earth processes). We thus invite submissions that aim to present new insights in seismic geomorphology and particularly welcome studies integrating borehole and geotechnical drilling information with shallow high-resolution seismic data and deeper traditional legacy oil industry data. Such studies are a crucial component in seismic inversion and refining or elucidating the accuracy of palaeo-geographies that are interpreted from just seismic data.

The session will be an excellent opportunity for subsurface geoscientists to showcase and discuss with contemporary geomorphologists and environmental scientists what can be achieved by utilising seismic and borehole data to unravel the Earth’s past.

Share:
Co-organized as CL1.28/CR2.10/SM1.7/SSP2.19
Convener: Andrew Newton  | Co-conveners: Katrine Juul Andresen , Kieran Blacker , Rachel Harding , Elodie Lebas 
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 0.31
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X2
In the last 20 years, a major breakthrough in palaeo-environmental research has been the utilisation of 2D and 3D seismic reflection data and its integration with borehole petrophysics and core lithologies: the so-called “geological Hubble”. This step-change in seismic data quality and interpretive techniques has allowed imaging and analysis of the subsurface from the seafloor down to the Moho, and for palaeo-geographies and contemporary processes to be reconstructed across 1D (borehole) to 4D (repeat seismic) scales.

Though many Earth scientists know the basic principles of these subsurface datasets, they are often unaware of the full capability of seismic data paired with borehole data. We hope that this session will provide a window into the exciting and cross-disciplinary research currently being performed using geomorphological approaches, state-of-the-art seismic interpretation, and integrative methodologies.

Submissions are welcome from a range of geological settings, thus, exposing seismic interpreters and non-specialists to differing geological perspectives, the latest seismic workflows, and examples of effective seismic and borehole integration. Examples could include (but are not restricted to), glacigenic tunnel valley complexes, igneous intrusions, submarine landslides, channel and canyon systems, salt tectonics overburden expression, methane hydrates, and subsurface fluid flow, all under the theme of how seismic data are interpreted and how the results are applied (e.g. palaeo-environmental reconstruction, seafloor engineering, or carbon sequestration).

The submissions will highlight the rationale behind the interpretation of seismic geometries and will generate discussions around potential issues of equifinality (i.e. similar seismic geometries arising from different Earth processes). We thus invite submissions that aim to present new insights in seismic geomorphology and particularly welcome studies integrating borehole and geotechnical drilling information with shallow high-resolution seismic data and deeper traditional legacy oil industry data. Such studies are a crucial component in seismic inversion and refining or elucidating the accuracy of palaeo-geographies that are interpreted from just seismic data.

The session will be an excellent opportunity for subsurface geoscientists to showcase and discuss with contemporary geomorphologists and environmental scientists what can be achieved by utilising seismic and borehole data to unravel the Earth’s past.