Clouds are a key component of the climate system, and the numerical models we use to predict future climate change do not reproduce them well. Our inability to simulate clouds stems from a poor process-level understanding, and there is a large community of scientists focusing on using high resolution models to understand clouds on a microphysical scale.
This session aims to showcase the latest advances in cloud modelling, providing a forum for discussions between scientists using various cloud process modelling techniques. Submissions using bin or bulk microphysics schemes, modelling clouds from stratocumulus to cumulonimbus, are encouraged.
In this session, we welcome submissions concerning:
Improved process understanding from high resolution modelling
New parameterisation developments (e.g. regarding INP/CCN, autoconversion or process rates)
Mixed-phase cloud modelling (e.g. phase partitioning, precipitation production)
Secondary ice production
New cloud models
Aerosol-cloud interactions from local aerosol sources
Importance of dynamical interactions (e.g. entrainment, large-scale meteorology)
Simulations of cloud phenomena requiring high resolution (e.g. cold-air outbreaks)
Submissions from Early Career Researchers are encouraged, and we will reserve oral presentation slots for such abstracts.