AS4.25

As the societal impacts of hazardous weather and other environmental pressures grow, the need for integrated predictions which can represent the numerous feedbacks and linkages between physical and chemical atmospheric processes is greater than ever. This has led to development of a new generation of high resolution multi-scale coupled prediction tools to represent the two-way interactions between aerosols, chemical composition, meteorological processes such as radiation and cloud microphysics.

Contributions are invited on different aspects of integrated model and data assimilation development, evaluation and understanding. A number of application areas of new integrated modelling developments are expected to be considered, including:

i) improved numerical weather prediction and chemical weather forecasting with feedbacks between aerosols, chemistry and meteorology,

ii) two-way interactions between atmospheric composition and climate variability.

This session aims to share experience and best practice in integrated prediction, including:

a) strategy and framework for online integrated meteorology-chemistry modelling;
b) progress on design and development of seamless coupled prediction systems;
c) improved parameterisation of weather-composition feedbacks;
d) data assimilation developments;
e) evaluation, validation, and applications of integrated systems.

This Section is organised in cooperation with the Copernicus Atmosphere Monitoring Service (CAMS), the "Pan-Eurasian Experiment" (PEEX) multidisciplinary program and the WMO Global Atmosphere Watch (GAW) Programme, celebrating its 30 years anniversary in 2019.

Share:
Co-organized as NH1.19/NP5.4
Convener: Alexander Baklanov | Co-conveners: Johannes Flemming, Georg Grell
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room 0.11
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X5
As the societal impacts of hazardous weather and other environmental pressures grow, the need for integrated predictions which can represent the numerous feedbacks and linkages between physical and chemical atmospheric processes is greater than ever. This has led to development of a new generation of high resolution multi-scale coupled prediction tools to represent the two-way interactions between aerosols, chemical composition, meteorological processes such as radiation and cloud microphysics.

Contributions are invited on different aspects of integrated model and data assimilation development, evaluation and understanding. A number of application areas of new integrated modelling developments are expected to be considered, including:

i) improved numerical weather prediction and chemical weather forecasting with feedbacks between aerosols, chemistry and meteorology,

ii) two-way interactions between atmospheric composition and climate variability.

This session aims to share experience and best practice in integrated prediction, including:

a) strategy and framework for online integrated meteorology-chemistry modelling;
b) progress on design and development of seamless coupled prediction systems;
c) improved parameterisation of weather-composition feedbacks;
d) data assimilation developments;
e) evaluation, validation, and applications of integrated systems.

This Section is organised in cooperation with the Copernicus Atmosphere Monitoring Service (CAMS), the "Pan-Eurasian Experiment" (PEEX) multidisciplinary program and the WMO Global Atmosphere Watch (GAW) Programme, celebrating its 30 years anniversary in 2019.