Recent developments in Geophysical Fluid Dynamics: Waves, Turbulence, and Transport
Co-organized as AS1.22/OS4.16
Convener: Uwe Harlander | Co-conveners: Yuli D. Chashechkin, Claudia Cherubini, Michael Kurgansky, Andreas Will
| Wed, 10 Apr, 08:30–10:15
Room M1
| Attendance Mon, 08 Apr, 10:45–12:30
Hall X4

Geophysical Fluid Dynamics (GFD) deals with various aspects of the mathematical descriptions of rotating stratified fluids starting from the physical laws of hydro-thermo-dynamics. Physicists and Mathematicians originating from various disciplines developed physical and numerical models with increasing complexity, adding to our fundamental understanding of such flows and thereby unifying these fields. Today GFD is a truly interdisciplinary field of its own, which encompasses multiscale flows of planetary atmospheres and oceans, their weather and climate, and the motions of 'the solid Earth'.

In this session we invite contributions expanding our understanding of the complex behavior of geophysical flows and Turbulence, presenting novel techniques that either facilitate a deeper understanding or improve the efficiency of numerical procedures involved, and/or reviewing major advances in a particular aspect of geophysical fluid dynamics. In these contexts, the role of waves (non-linear, inertial, internal, vorticity or helicity waves), turbulence and transport are an important factor in the understanding of GFD flows.

The interdisciplinary character of dynamical and computational aspects of this session encourages an exchange of ideas and contributions across various fields, such as meteorology, oceanography, astrophysics, geological fluid dynamics, applied mathematics, and computational fluid dynamics with applications to ocean and atmosphere and their Biological influences.
The recent improvements in Remote Sensing of the Earth and other Planets also allows comparison with Laboratory and Numerical Experiments involving Stratification, Rotation, Magnetic Fields, body forces, etc... Other NP6.x sessions address complementary aspects affecting Geo-Astrophysical Turbulence.