Predicting anisotropic physical properties using single crystal and texture data
Co-organized as EMRP1.94/GD11.5/TS13.4
Convener: Andrea Regina Biedermann | Co-conveners: Bjarne Almqvist, Sarah Brownlee, Mainprice David
Tue, 09 Apr, 16:15–18:00
Room -2.62

This course is aimed at anyone who wants to better understand the origin of physical anisotropy in rocks. The principles and methods learned in the course can be applied to any anisotropy that is described by tensors and depends on the bulk properties of a sample rather than being dominated by grain boundary properties. As such, this course is relevant for researchers working in a range of fields, including those investigating seismic anisotropy, magnetic fabrics, or anisotropy of thermal conductivity.
We will discuss the intrinsic anisotropy of single crystals, the interplay of crystallographic preferred orientation and single crystal anisotropy to control the anisotropy in rocks, and give an introduction to how anisotropic physical properties can be predicted in rocks, including an introduction to the freely available Matlab toolbox MTex.
Participants will leave the course with a thorough and detailed understanding of factors controlling anisotropy in rocks, and have the necessary background to quantitatively predict anisotropy based on their own texture datasets or demonstration data sets.