AS4.9

Clouds play an important role in the polar climate due to their interaction with atmospheric radiation and their role in the hydrological cycle linking poleward water vapour transport with precipitation, thereby affecting the mass balance of the polar ice sheets. Cloud-radiative feedbacks have also an important influence on sea ice. Cloud and precipitation properties depend strongly on the atmospheric dynamics and moisture sources and transport, as well as on aerosol particles, which can act as cloud condensation and ice nuclei.

This session aims at bringing together researchers using observational (in-situ, aircraft, ground-based, and satellite-based remote sensing) and/or modeling approaches (at various scales) to improve our understanding of polar tropospheric clouds, precipitation, and related mechanisms and impacts. Contributions are invited on various relevant processes including (but not limited to):
- Drivers of cloud/precipitation microphysics at high latitudes,
- Sources of cloud nuclei both at local and long range,
- Linkages of polar clouds/precipitation to the moisture sources and transport,
- Relationship of the poleward moisture transport to processes in the tropics and extra-tropics, including extreme transport events (e.g., atmospheric rivers, moisture intrusions),
- Relationship of moisture/cloud/precipitation processes to the atmospheric dynamics, ranging from synoptic and meso-scale processes to teleconnections and climate indices,
- Role of the surface-atmosphere interaction in terms of mass, energy, and cloud nuclei particles (evaporation, precipitation, albedo changes, cloud nuclei sources, etc)
- Effects that the clouds/precipitation in the Polar Regions have on the polar and global climate system, surface mass and energy balance, sea ice and ecosystems.

Papers including new methodologies specific to polar regions are encouraged, such as (i) improving polar cloud/precipitation parameterizations in atmospheric models, moisture transport events detection and attribution methods specifically in the high latitudes, and (ii) advancing observations of polar clouds and precipitation. We would like to emphasize collaborative observational and modeling activities, such as the Year of Polar Prediction (YOPP), Polar-CORDEX, the (AC)³ project on Arctic Amplification, SOCRATES and other campaigns over the Southern Ocean/Antarctica, and encourage related contributions.

The session is endorsed by the SCAR Antarctic Clouds and Aerosols Action Group.

Young scientist/student presentations are especially encouraged and we will reserve several oral units for such papers in this session.

Share:
Co-organized as CR3.06/HS11.16
Convener: Manfred Wendisch  | Co-conveners: Susanne Crewell , Irina V. Gorodetskaya , Tom Lachlan-Cope , Nicole van Lipzig 
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room 0.31
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X5
Clouds play an important role in the polar climate due to their interaction with atmospheric radiation and their role in the hydrological cycle linking poleward water vapour transport with precipitation, thereby affecting the mass balance of the polar ice sheets. Cloud-radiative feedbacks have also an important influence on sea ice. Cloud and precipitation properties depend strongly on the atmospheric dynamics and moisture sources and transport, as well as on aerosol particles, which can act as cloud condensation and ice nuclei.

This session aims at bringing together researchers using observational (in-situ, aircraft, ground-based, and satellite-based remote sensing) and/or modeling approaches (at various scales) to improve our understanding of polar tropospheric clouds, precipitation, and related mechanisms and impacts. Contributions are invited on various relevant processes including (but not limited to):
- Drivers of cloud/precipitation microphysics at high latitudes,
- Sources of cloud nuclei both at local and long range,
- Linkages of polar clouds/precipitation to the moisture sources and transport,
- Relationship of the poleward moisture transport to processes in the tropics and extra-tropics, including extreme transport events (e.g., atmospheric rivers, moisture intrusions),
- Relationship of moisture/cloud/precipitation processes to the atmospheric dynamics, ranging from synoptic and meso-scale processes to teleconnections and climate indices,
- Role of the surface-atmosphere interaction in terms of mass, energy, and cloud nuclei particles (evaporation, precipitation, albedo changes, cloud nuclei sources, etc)
- Effects that the clouds/precipitation in the Polar Regions have on the polar and global climate system, surface mass and energy balance, sea ice and ecosystems.

Papers including new methodologies specific to polar regions are encouraged, such as (i) improving polar cloud/precipitation parameterizations in atmospheric models, moisture transport events detection and attribution methods specifically in the high latitudes, and (ii) advancing observations of polar clouds and precipitation. We would like to emphasize collaborative observational and modeling activities, such as the Year of Polar Prediction (YOPP), Polar-CORDEX, the (AC)³ project on Arctic Amplification, SOCRATES and other campaigns over the Southern Ocean/Antarctica, and encourage related contributions.

The session is endorsed by the SCAR Antarctic Clouds and Aerosols Action Group.

Young scientist/student presentations are especially encouraged and we will reserve several oral units for such papers in this session.