HS6.3
Remote Sensing for Flood Dynamics Monitoring, Water Level, Storage and Discharge
Co-organized as NH6.19
Convener: Guy J.-P. Schumann | Co-conveners: Alessio Domeneghetti, Ben Jarihani, Angelica Tarpanelli, Jérôme Benveniste
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room C
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A

The monitoring of river water levels, river discharges, water bodies extent, storage in lakes and reservoirs, flooding and floodplain dynamics plays a key role in assessing water resources, understanding surface water dynamics, characterizing and mitigating water related risks and enabling integrated management of water resources and aquatic ecosystems.

While in situ measurement networks play a central role in the monitoring effort, remote sensing techniques are expected to contribute in an increasing way, as they can provide homogeneous and near real time measurements over large areas, from local to basin wide, regional and global.

In this context, remote sensing represents a value source of data and observations that may alleviate the decline in field surveys and gauging stations, especially in remote areas and developing countries. The implementation of remotely-sensed variables (such as digital elevation model, river width, flood extent, water level, land cover, etc.) in hydraulic modelling promises to considerably improve our process understanding and prediction and during the last decades, an increasing amount of research has been undertaken to better exploit the potential of current and future satellite observations. In particular, in recent years, the scientific community has shown how remotely sensed variables have the potential to play a key role in the calibration and validation of hydraulic models, as well as provide a breakthrough in real-time monitoring applications. However, except for a few pioneering studies, the potential of remotely sensed data to enhance water-related modelling and applications has not yet been fully enough explored, and the use of such data for operational decision-making is far from being consolidated. In this scenario, the forthcoming satellite missions dedicated to global water surfaces monitoring will enhance the quality, as well as the spatial and temporal coverage, of remotely sensed data, thus offering new frontiers and opportunities to enhance the understanding of flood dynamics and our capability to map their extents.

We encourage presentations related to flood monitoring, water level, storage and discharge etc through remotely sensed data including:

- Remote sensing data for flood hazard and risk mapping;
- Remote sensing techniques to monitor flood dynamics;
- The use of remotely sensed data for the calibration, or validation, of hydrological or hydraulic models;
- Data assimilation of remotely sensed data into hydrological and hydraulic models;
- Improvement of river discretization and monitoring by means of satellite based observations;
- River flows estimation by means of remote sensed observations;
- River and flood dynamics estimation from satellite (especially time lag, flow velocity, etc.)