NH1.4

Karst environments are characterized by distinctive landforms and unique hydrologic behaviors. Karst systems are commonly extremely complex, heterogeneous, and very difficult to manage because their formation and evolution are controlled by a wide range of geological, hydrological, geochemical and biological processes. Further, karst systems are extremely vulnerable due to the direct connection between the surface and subsurface compartments through conduit networks.
The great variability and unique connectivity may result in serious engineering problems: on one hand, karst groundwater resources are readily contaminated by pollution because of the rapidity of conduit flow; on the other hand, the presence of karst conduits that weakens the strength of the rock mass may lead to serious natural and human-induced hazards. The plan and development of engineering projects in karst environments thus require: 1) an enhanced understanding of natural processes that govern the initiation and evolution of karst systems through both field and modelling approaches, and 2) specific interdisciplinary approaches aiming at at better assessing the associated uncertainties and minimizing the detrimental effects of hazardous processes and environmental problems.
This session calls for abstracts on research related to geomorphology, hydrogeology, engineering geology, and/or hazard mitigation in karst environments in the context of climate change and increased human disturbance. It also aims to discuss various characterization and modelling methods applied in each specific research domain, with their consequences on the understanding of the whole process of karst genesis and functioning.

Share:
Co-organized as GM7.14/HS11.60/NP9.1
Convener: Hervé JOURDE | Co-conveners: Pauline Collon, Naomi Mazzilli, Mario Parise, Xiaoguang Wang
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room L1
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X3
Karst environments are characterized by distinctive landforms and unique hydrologic behaviors. Karst systems are commonly extremely complex, heterogeneous, and very difficult to manage because their formation and evolution are controlled by a wide range of geological, hydrological, geochemical and biological processes. Further, karst systems are extremely vulnerable due to the direct connection between the surface and subsurface compartments through conduit networks.
The great variability and unique connectivity may result in serious engineering problems: on one hand, karst groundwater resources are readily contaminated by pollution because of the rapidity of conduit flow; on the other hand, the presence of karst conduits that weakens the strength of the rock mass may lead to serious natural and human-induced hazards. The plan and development of engineering projects in karst environments thus require: 1) an enhanced understanding of natural processes that govern the initiation and evolution of karst systems through both field and modelling approaches, and 2) specific interdisciplinary approaches aiming at at better assessing the associated uncertainties and minimizing the detrimental effects of hazardous processes and environmental problems.
This session calls for abstracts on research related to geomorphology, hydrogeology, engineering geology, and/or hazard mitigation in karst environments in the context of climate change and increased human disturbance. It also aims to discuss various characterization and modelling methods applied in each specific research domain, with their consequences on the understanding of the whole process of karst genesis and functioning.