NH6.3 | PICO
Remote sensing for geohazards investigations
Co-organized as GI3.9
Convener: Matteo Del Soldato | Co-conveners: Federico Raspini, Roberto Tomás Jover, Gerardo Herrera, Zhenhong Li
PICOs
| Wed, 10 Apr, 10:45–12:30
 
PICO spot 1

World population growth combined with continuous climate changes increase the possibility of the human settles to be affected by landslides, earthquakes, floods and others natural and anthropogenic geohazards. As consequences, human settlements, structures and infrastructures can suffer important damage, casualties and injuries, and an enormous amount of resources are needed to restore direct and indirect costs. Furthermore, the social impact and the loss of cultural and historical heritage must be considered.
The International Disaster Database created by the Centre for Research on the Epidemiology of Disasters (CRED) states that more than 14,000 worldwide relevant natural disasters occurred during the last century, causing casualties or requiring of international assistance.
For this reason, the investigation, characterization and monitoring of geo-hazardous phenomena play a fundamental role in order to improve the knowledge for avoiding further recurrences with additional social, human and economic losses. The use of Earth Observation (EO) techniques for monitoring and characterizing geohazards is a well-known way to study these phenomena. The application of EO methods in this field has risen exponentially in the last decades yet nowadays is constantly evolving.
Remote sensing approaches allow to efficiently retrieve relevant information on geological processes at regional scale to investigate, characterize, monitor and model, as well as to prevent, geohazards. Satellites constellations, air and ground platforms equipped with different sensors, (e.g. optical camera, radar or LiDAR), coupled with advanced processing techniques and algorithms are one of the best ways to investigate geohazards. The possibility to combine different types of data allows to perform multi-sensor and multi-temporal analyses. In this way, the wide area coverage capabilities combined with high accuracy and precision play an important role in the widespread use for different applications.
Submissions are encouraged to cover a broad range of topics on the various applications of remote sensing techniques, which may include, but are not limited to, the following topics: i) innovative applications and methods on remote sensing, ii) significant cases of study, iii) applications and models concerning the use of satellite, iv) air and ground platform taking advantage of the use of different sensors for investigating a broad range of topic (e.g. landslide, subsidence, damage assessment, infrastructure stability).