Increase in the amount of high quality seismic data and advances in high-performance computing in recent years have been transformative to explore Earth’s interior at all scales through seismic modelling, both in theory and practice. The goal of this session is to bring seismologists and computational scientists together to discuss recent advances and future directions in innovative forward & inverse modelling techniques, HPC systems & computational tools as well as the related theory and scientific outcomes.
We encourage contributions in the field of theoretical and computational seismology highlighting, but not limited to;
- advancements in numerical solvers and techniques,
- seismic codes on emerging CPU/GPU architectures
- full-waveform inversion from local to global scales,
- Bayesian inverse problems,
- machine learning algorithms for seismic problems,
- big data (seismic & computational) problems,
- large-scale workflows on HPC systems and their automatization,
- optimization strategies,
- uncertainty analysis for large-scale imaging,
- seismological results of HPC applications from passive (earthquakes and noise) and active seismic sources,
- visualization (parallel, VR platforms, etc. ).
SM7.1
Advances in Theoretical and Computational Seismology
Co-organized as ESSI1.11/GD8.8