ST3.3

Many recent advances in aeronomy, space sciences, geomagnetism, and gravity arose from combining specific knowledge of these areas in interdisciplinary research. Current outstanding questions are, for example: What features of ionospheric currents do we discover when we understand the shape, strengths, and variation of the geomagnetic background field? What is the role of upward propagating atmospheric waves in energy and momentum transport into the ionosphere? Which ionospheric processes need to be better quantified to achieve complete knowledge of global core or crustal field variations? How does knowledge of the geometry of ionospheric and magnetospheric sources help in determining Earth’s conductivity in the geomagnetic field? How strongly do we need to consider Earth’s conductivity in quantifying ionospheric currents? How can we quantify and correct for ionospheric perturbations to achieve the best gravity field solutions? Finally, what can we learn about space sciences by studying ionospheric effects on geodetic measurements?

The session invites contributions on any of the subjects and in particular on results that benefit from interdisciplinary works in the areas of space science, geomagnetism, and gravity. Submissions are welcomed that contain analyses of global satellite or ground-based observations or modelling studies, including a combination of them.

Share:
Co-organized as EMRP2.6/G4.5
Convener: Claudia Stolle | Co-conveners: Dimitry Pokhotelov, Patrick Alken, Jorge Luis Chau, Alexander Grayver, Adrian Jaeggi, Rumi Nakamura, Nick Pedatella
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room L1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X4
Many recent advances in aeronomy, space sciences, geomagnetism, and gravity arose from combining specific knowledge of these areas in interdisciplinary research. Current outstanding questions are, for example: What features of ionospheric currents do we discover when we understand the shape, strengths, and variation of the geomagnetic background field? What is the role of upward propagating atmospheric waves in energy and momentum transport into the ionosphere? Which ionospheric processes need to be better quantified to achieve complete knowledge of global core or crustal field variations? How does knowledge of the geometry of ionospheric and magnetospheric sources help in determining Earth’s conductivity in the geomagnetic field? How strongly do we need to consider Earth’s conductivity in quantifying ionospheric currents? How can we quantify and correct for ionospheric perturbations to achieve the best gravity field solutions? Finally, what can we learn about space sciences by studying ionospheric effects on geodetic measurements?

The session invites contributions on any of the subjects and in particular on results that benefit from interdisciplinary works in the areas of space science, geomagnetism, and gravity. Submissions are welcomed that contain analyses of global satellite or ground-based observations or modelling studies, including a combination of them.