Please note that this session was withdrawn and is no longer available in the respective programme. This withdrawal might have been the result of a merge with another session.

TS6.2

When faults are studied over a range of spatial and temporal scales, the structural inheritance, fault growth and interaction will be affected. Pre-existing structural heterogeneities, which are imparted through prior phases of deformation, are present across all scales throughout the lithosphere; from discrete fabrics at the centimetre scale to hundreds of kilometre scale rift systems and changes in lithospheric thickness. Fault growth can be controlled by factors including mechanical layering or variation, strain localisation, regional and local stress changes and reactivation of earlier structures – each of these factors are likely to influence the interaction between faults in a tectonic system. Therefore, by integrating our understanding of fault growth and interaction with respect to structural inheritance and ultimately earthquake hazard, over a range of spatial and temporal scales, will lead to greater understanding of the fundamental processes that govern fault behaviour.

Share:
Convener: Thomas Phillips | Co-conveners: Zoe Mildon, Thilo Wrona, Alexander L. Peace, Alodie Bubeck
When faults are studied over a range of spatial and temporal scales, the structural inheritance, fault growth and interaction will be affected. Pre-existing structural heterogeneities, which are imparted through prior phases of deformation, are present across all scales throughout the lithosphere; from discrete fabrics at the centimetre scale to hundreds of kilometre scale rift systems and changes in lithospheric thickness. Fault growth can be controlled by factors including mechanical layering or variation, strain localisation, regional and local stress changes and reactivation of earlier structures – each of these factors are likely to influence the interaction between faults in a tectonic system. Therefore, by integrating our understanding of fault growth and interaction with respect to structural inheritance and ultimately earthquake hazard, over a range of spatial and temporal scales, will lead to greater understanding of the fundamental processes that govern fault behaviour.