Models and observations of vertical plate motions, and the links between surface and deep mantle processes, in particular the plume mode of mantle convection: A tribute to Kevin Burke
Co-organized as GMPV2.10/SM1.13/TS9.6
Convener: Mat Domeier | Co-conveners: Lewis D. Ashwal, Prof. Dr. Ulrich Anton Glasmacher, Anke Friedrich, Barbara Romanowicz, Susan Webb, Siavash Ghelichkhan
| Tue, 09 Apr, 14:00–18:00
Room -2.21
| Attendance Wed, 10 Apr, 14:00–15:45
Hall X2

Since the 1960’s plate tectonics has been accepted as a surface expression of the earth's convecting mantle, and yet numerous geological features of plate interiors remain unexplained within the plate tectonic paradigm, including intraplate earthquakes and large-scale vertical motions of continents as epitomized by the uplift history of Africa. Kevin Burke (1929-2018), one of the greatest geologists of our time who published original and thought-provoking contributions for six decades, was one of the most vocal scientists to assert that plate tectonics is an incomplete theory without a clear understanding of its links with deep Earth processes, including the role of mantle plumes. In this session we commemorate the pioneering work of Kevin and explore contributions from across the diverse fields that interested him, including global tectonics, the Wilson Cycle, the origin of Precambrian greenstone belts, the evolution of the Caribbean, and the uplift history of Africa and other continents. We discuss the state-of-the art of the plume mode of mantle convection, its influence on the dynamics of the asthenosphere and the lithosphere, and its expression at the earth’s surface. We seek contributions from natural case studies (tectonic evolution, sedimentology, thermochronology, geophysics, palaeoclimate) and from geodynamics or geomaterials oriented (analog and numerical) modeling, which address the interplay of deep mantle – asthenosphere – lithosphere – basin – surface processes in all plate environments. In particular, we appreciate studies that contribute to the understanding of feedback processes causing the evolution of dynamic topography and welcome contributions that examine surface and deep Earth links based on observations and numerical models (although notably the latter never seduced Kevin).