Silicon in the critical zone under global change: towards an integrated view from ecological, agronomical and geochemical perspectives
Convener: Camille Delvigne | Co-conveners: Julia Cooke, Jean-Thomas Cornelis, Anika Klotzbücher, Jörg Schaller
| Tue, 09 Apr, 16:15–18:00
Room 2.25
| Attendance Tue, 09 Apr, 14:00–15:45
Hall A

Silicon (Si) is crucial in numerous biochemical and geochemical processes. Earlier scientific literature on Si cycling focused on abiotic weathering processes, while in recent years, scientists have become more aware of the significant role of biotic controls. Silicon plays a key role in processes governing soil formation and soil-plant feedback interactions. Vegetation, soil organisms, including fauna, microorganisms and fungi, strongly affect Si dynamic in terrestrial ecosystems but the mechanisms are still poorly understood. In particular, Si has numerous beneficial effects on both plant structure, function as well as resilience to biotic and abiotic stresses motivating studies focusing on Si functional ecology and silica biomineralization. The global Si cycle is receiving increased attention because of its links with the carbon cycle as well as other major biogeochemical cycles and toxic elements. A better understanding of the terrestrial Si cycle is thus critical, especially as drastic and subtle changes in the terrestrial Si cycle are occurring worldwide in response to global change.
This session aims at compiling recent work focusing on biogeochemical Si cycling under global change, its functions in terrestrial ecosystems as well as its evolution in the recent past. This session bridges advances from soil sciences, ecology, plant physiology, agronomy, biogeochemistry (including isotopes studies) and paleontology. We invite studies tackling biotic and abiotic interactions at different time and spatial scales affecting the Si cycle and its interactions with other biogeochemical cycles. We encourage interdisciplinary studies as well as contributions from both field and laboratory experiments encompassing biogeochemical processes, molecular mechanisms to improve our understanding of the role of Si in ecosystem processes. Meta-analyses and paleo-environmental studies using phytoliths are also welcome.