EGU2020-10329
https://doi.org/10.5194/egusphere-egu2020-10329
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

First application of low-cost eddy covariance for CO2 fluxes over agroforestry

Justus van Ramshorst1, Christian Markwitz1, Timothy Hill2, Robert Clement2, Alexander Knohl1, and Lukas Siebicke1
Justus van Ramshorst et al.
  • 1University of Göttingen, Bioclimatology, Göttingen, Germany (justus.vanramshorst@uni-goettingen.de)
  • 2University of Exeter, Department of Geography, College of Life and Environmental Sciences, UK

Agroforestry is a combination of monoculture agriculture and trees. Studies of net ecosystem exchange of CO2 (NEE) of agroforestry systems are rare, in comparison to the extensive studies of NEE of agricultural systems (croplands and grasslands). Agroforestry has been shown to alter the microclimate, productivity, and nutrient and water usage – as compared to standard agricultural practise. The, potentially, higher carbon sequestration of agroforestry, relative to monoculture systems, provides an interesting option for mitigating climate change, highlighting the need for improved study of agroforestry systems. The current study, as part of the SIGNAL (sustainable intensification of agriculture through agroforestry) project, investigates NEE of agroforestry compared to that of monoculture agriculture. The study employs paired comparisons of flux measurements above agroforestry and monoculture agronomy, replicated at five locations across Germany. Fluxes are measured, using innovative low-cost CO2 eddy covariance sensors (slow response Vaisala GMP343 IRGA with custom made housing), which have been successfully used in a study over grassland. Continuous data series from mid-summer until winter 2019 show that both systems acted as a sink with comparable fluxes during summer. The diurnal CO2 cycle and the response to management activities are distinguishable and in autumn preliminary results suggest a small difference in fluxes between the two systems. The low-cost eddy covariance system is able to capture the turbulence and to measure the CO2 flux over the agroforestry and monoculture agricultural system. We aim to further improve the quality of the CO2 fluxes, by adapting post-processing software to better estimate the difference in carbon uptake between the agroforestry and monoculture systems.

How to cite: van Ramshorst, J., Markwitz, C., Hill, T., Clement, R., Knohl, A., and Siebicke, L.: First application of low-cost eddy covariance for CO2 fluxes over agroforestry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10329, https://doi.org/10.5194/egusphere-egu2020-10329, 2020

Displays

Display file