EGU2020-10431
https://doi.org/10.5194/egusphere-egu2020-10431
EGU General Assembly 2020
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Implementing a new data acquisition system for the advanced integrated atmospheric observation system KITcube

Martin Kohler, Mahnaz Fekri, Andreas Wieser, and Jan Handwerker
Martin Kohler et al.
  • Karlsruhe Institute of Technology (KIT) Institute of Meteorology and Climate Research , Department Troposphere Research, Eggenstein-Leopoldshafen, Germany (martin.kohler@kit.edu)

KITcube (Kalthoff et al, 2013) is a mobile advanced integrated observation system for the measurement of meteorological processes within a volume of 10x10x10 km3. A large variety of different instruments from in-situ sensors to scanning remote sensing devices are deployed during campaigns. The simultaneous operation and real time instrument control needed for maximum instrument synergy requires a real-time data management designed to cover the various user needs: Save data acquisition, fast loading, compressed storage, easy data access, monitoring and data exchange. Large volumes of data such as raw and semi-processed data of various data types, from simple ASCII time series to high frequency multi-dimensional binary data provide abundant information, but makes the integration and efficient management of such data volumes to a challenge.
Our data processing architecture is based on open source technologies and involves the following five sections: 1) Transferring: Data and metadata collected during a campaign are stored on a file server. 2) Populating the database: A relational database is used for time series data and a hybrid database model for very large, complex, unstructured data. 3) Quality control: Automated checks for data acceptance and data consistency. 4) Monitoring: Data visualization in a web-application. 5) Data exchange: Allows the exchange of observation data and metadata in specified data formats with external users.
The implemented data architecture and workflow is illustrated in this presentation using data from the MOSES project (http://moses.eskp.de/home).

References:

KITcube - A mobile observation platform for convection studies deployed during HyMeX .
Kalthoff, N.; Adler, B.; Wieser, A.; Kohler, M.; Träumner, K.; Handwerker, J.; Corsmeier, U.; Khodayar, S.; Lambert, D.; Kopmann, A.; Kunka, N.; Dick, G.; Ramatschi, M.; Wickert, J.; Kottmeier, C.
2013. Meteorologische Zeitschrift, 22 (6), 633–647. doi:10.1127/0941-2948/2013/0542 

How to cite: Kohler, M., Fekri, M., Wieser, A., and Handwerker, J.: Implementing a new data acquisition system for the advanced integrated atmospheric observation system KITcube, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10431, https://doi.org/10.5194/egusphere-egu2020-10431, 2020.

Displays

Display file