EGU2020-10526
https://doi.org/10.5194/egusphere-egu2020-10526
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Monitoring systems for the assessment of water infrastructure hazards due to extreme climatic conditions

Manousos Valyrakis, Panagiotis Michalis, Yi Xu, and Pablo Gaston Latessa
Manousos Valyrakis et al.
  • University of Glasgow, School of Engineering, Infrastructure and Environment Research Division, Glasgow, United Kingdom of Great Britain and Northern Ireland (manousos.valyrakis@glasgow.ac.uk)

Ageing infrastructure alongside with extreme climatic conditions pose a major threat for the sustainability of civil infrastructure systems with significant societal and economic impacts [1]. A main issue also arises from the fact that past and existing methods that incorporate the risk of climatic hazards into infrastructure design and assessment methods are based on historical records [2].

Major flood incidents are the factor of evolving geomorphological processes, which cause a drastic reduction in the safe capacity of structures (e.g. bridges, dams). Many efforts focused on the development and application of monitoring techniques to provide real-time assessment of geomorphological conditions around structural elements [1, 3, 4]. However, the current qualitative visual inspection practice cannot provide reliable assessment of geomorphological effects at bridges and other water infrastructure.

This work presents an analysis of the useful experience and lessons learnt from past monitoring efforts applied to assess geomorphological conditions at bridges and other types of water infrastructure. The main advantages and limitations of each monitoring method is summarized and compared, alongside with the key issues behind the failure of existing instrumentation to provide a solution. Finally, future directions on scour monitoring is presented focusing on latest advances in soil and remote sensing methods to provide modern and reliable alternatives for real-time monitoring and prediction [5, 6] of climatic hazards of infrastructure at risk.

 

References

[1] Michalis, P., Konstantinidis, F. and Valyrakis, M. (2019) The road towards Civil Infrastructure 4.0 for proactive asset management of critical infrastructure systems. Proceedings of the 2nd International Conference on Natural Hazards & Infrastructure (ICONHIC2019), Chania, Greece, 23–26 June 2019.

[2] Pytharouli, S., Michalis, P. and Raftopoulos, S. (2019) From Theory to Field Evidence: Observations on the Evolution of the Settlements of an Earthfill Dam, over Long Time Scales. Infrastructures 2019, 4, 65.

[3] Koursari, E., Wallace, S., Valyrakis, M. and Michalis, P. (2019). The need for real time and robust sensing of infrastructure risk due to extreme hydrologic events, 2019 UK/ China Emerging Technologies (UCET), Glasgow, United Kingdom, 2019, pp. 1-3. doi: 10.1109/UCET.2019.8881865

[4] Michalis, P., Saafi, M. and M.D. Judd. (2012) Integrated Wireless Sensing Technology for Surveillance and Monitoring of Bridge Scour. Proceedings of the 6th International Conference on Scour and Erosion, France, Paris, pp. 395-402.

[5] Valyrakis, M., Diplas, P., and Dancey, C.L. (2011) Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems, Hydrological Processes, 25 (22). pp. 3513-3524. ISSN 0885-6087, doi:10.1002/hyp.8228.

[6] Valyrakis, M., Michalis, P. and Zhang, H. (2015) A new system for bridge scour monitoring and prediction. Proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, pp. 1-4.

How to cite: Valyrakis, M., Michalis, P., Xu, Y., and Latessa, P. G.: Monitoring systems for the assessment of water infrastructure hazards due to extreme climatic conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10526, https://doi.org/10.5194/egusphere-egu2020-10526, 2020