Towers, Chambers & UAVs: Exploring the drivers of carbon sink strength at a temperate peatland
- 1School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom of Great Britain and Northern Ireland
- 2UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, United Kingdom of Great Britain and Northern Ireland
Peatlands are terrestrial carbon sinks of global significance, storing an estimated one-third of global soil carbon. Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) can however vary substantially on seasonal and inter-annual timescales, with some peatlands switching from a sink to a source of CO2. Complex and sometimes competing processes, such as meteorology and phenology, regulate a peatland’s net carbon sink strength. Understanding seasonal and inter-annual variability in NEE requires studying these environmental controls at multiple spatial and temporal scales. The role of vegetation in regulating NEE can be particularly difficult to ascertain at the finer timescales (e.g. seasonal) and at sites with abundant plant diversity, non-uniform distribution and complex micro-topography, such as peatlands. Vegetation surveys are traditionally conducted every few years and, because of this, they might not capture the shorter-term variations that can result from meteorological anomalies such as drought. New technologies, such as Unmanned Aerial Vehicles (UAVs), offer novel opportunities to improve the temporal resolution and spatial coverage of traditional vegetation survey approaches. UAVs are a more flexible, often cheaper alternative to satellite products, which can be used to collect data at the sub-centimetre scale. Such high resolution is particularly valuable in peatland environments, which typically display strong heterogeneity at the micro-site level (< 0.5 m). We employ UAV surveys with a Parrot Sequoia multispectral camera to map vegetation and track its phenology using vegetation indices such as the Normalised Difference Vegetation Index (NDVI) over the course of two growing seasons at a temperate Scottish peatland. By combining this multispectral data with in-situ NEE measurements (closed chambers and eddy-covariance) and meteorological data, this project aims to quantify the impact of weather and phenology on carbon balance at the site. An improved understanding of these two drivers of peatland carbon cycling will allow for better prediction of the impact of climate change at the site.
How to cite: Simpson, G., Helfter, C., Nichol, C., and Wade, T.: Towers, Chambers & UAVs: Exploring the drivers of carbon sink strength at a temperate peatland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11175, https://doi.org/10.5194/egusphere-egu2020-11175, 2020