EGU2020-11176
https://doi.org/10.5194/egusphere-egu2020-11176
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Growth of carbonate platforms controlled by salt tectonics (Northern Calcareous Alps, Austria)

Philipp Strauss1,2, Jonas Ruh3, Benjamin Huet4,5, Pablo Granado2, Josep Anton Muñoz2, Klaus Pelz1, Michael König1, Eduard Roca2, and Elizabeth P Wilson2
Philipp Strauss et al.
  • 1OMV Austria Exploration and Production GmbH, Trabrennstrasse 6-8, 1020, Vienna, Austria
  • 2Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí i Franquès s/n 08028, Barcelona, Spain
  • 3Structural Geology and Tectonics Group, Geological Institute, Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5. 8092 Zürich. Switzerland.
  • 4Department of Hard Rock Geology, Geological Survey of Austria Neulinggasse 38, 1030 Vienna, Austria
  • 5Department of Geodynamic and Sedimentology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.

The Mid Triassic section of the Northern Calcareous Alps (NCA) is dominated by carbonate platforms, which grew diachronously on the Neo-Tethys shelf beginning in the Middle Anisian and ending in Lower Carnian times. The platforms grew isolated in previous deeper marine settings with high growth rates reaching 1.5 to 2 mm per year. The concept of self-controlled growth of carbonate systems on salt changes the understanding of Mid-Triassic NCA sedimentology. Conceptual models of the carbonate platform growth were done based on field observations, construction of cross-sections and subsidence analysis of selected carbonate mini-basins. To satisfy the observed boundary conditions of platforms growth in respect of timing, water depth and basin evolution, fast accumulation rates have to be assumed best represented by salt deflation and down-building of carbonate minibasins. A feedback loop of carbonate growth (creating a load gradient) and subsidence by salt evacuation initiates once the pre-kinematic layer reaches the sea level and the first layer of carbonate is produced. An initial phase of fast carbonate aggradation ends once the salt below the platform is fully evacuated and the minibasin is primary welded.

To further analyse and quantify boundary conditions necessary for the observed carbonate mini basin evolution, a series of thermo-mechanical numerical experiments were conducted. The density and rheological parameters for rock salt applied in the experiments were mainly gathered from observations and mechanical experiments on salt from salt mines and from an exploration well by OMV in the Vienna Basin. The numerical simulations essentially support the concept of down-building carbonate platforms. Self-controlled growth of carbonate systems on salt allows a completely new perspective to understand Mid-Triassic NCA carbonate platforms and their boundary conditions, such as the accumulation of thick carbonates (>1.5 km) without basement faulting, the isolated growth of platforms, or the transition of aggradational to progradational growth.

How to cite: Strauss, P., Ruh, J., Huet, B., Granado, P., Muñoz, J. A., Pelz, K., König, M., Roca, E., and Wilson, E. P.: Growth of carbonate platforms controlled by salt tectonics (Northern Calcareous Alps, Austria), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11176, https://doi.org/10.5194/egusphere-egu2020-11176, 2020