EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

eWaterCycle: Fully open en transparant hydrological data and modelling platform facilitates FAIR policy making.

Rolf Hut1, Caitlyn Hall2, Niels Drost3, and Nick van de Giesen1
Rolf Hut et al.
  • 1Delft University of Technology, The Netherlands (
  • 2Arizona State University, USA
  • 3Netherlands eSciencecenter, The Netherlands

In Spring 2019, eScience Center Netherlands and Delft University of Technology facilitated a workshop to develop a FAIR – Findable, Accessible, Interoperable, Reusable – multi-application platform that hydrological experts and non-experts can use to guide their decision-making. Many hydrologists believe that there are too many models in the field. Each new research generation strives to improve current methods with increasing complexity and developing individual models to fit specific situations - and to what end? If other experts struggle to adapt a model, it’s unreasonable to expect a non-expert to gain meaningful insight to address challenges impacting a community or guide policy.

 A community-driven platform (eWatercycle) has been developed by an international multi-disciplinary team of hydrologists, research software engineers, tinkerers, science policy advisors, and more. The diverse and inclusive team membership is critical to ensure that the best possible tool is developed to address multi-faceted questions and benefit a wide-reaching community. eWatercycle incorporates many popular hydrological models (e.g., SUMMA, PCRGLOB-WB, WFLOW, and HYPE). We have incorporated the massive ERA5 climate reanalysis dataset, as well as global stream gauge data, such that users can analyze a system for any region. 

Considering the potential complexity from eWatercycle’s inclusion of several model types, the team continues to develope this model framework in close cooperation with potential end-users. We envision end-users may include a government scientist working to inform policy decisions on water management or city officials developing risk management strategies for extreme weather events. Users of eWatercycle will not be required to learn new programming languages or overcome significant technical barriers to begin using the framework. As a result, users will be able to use eWatercycle to work towards solving region-specific problems with confidence by considering the outcomes of different hydrological models and access to potential uncertainty in the available data and modeling techniques.

We will demonstrate the latest version of the eWatercycle platform, it's models, data and analyses capabilities. 

How to cite: Hut, R., Hall, C., Drost, N., and van de Giesen, N.: eWaterCycle: Fully open en transparant hydrological data and modelling platform facilitates FAIR policy making., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11254,, 2020


Display file