EGU2020-1161
https://doi.org/10.5194/egusphere-egu2020-1161
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Sensitivity of peatland respiration to vegetation community and temperature metric during a hot drought

Julia Kelly1, Natascha Kljun1, Lars Eklundh2, Leif Klemedtsson3, Bengt Liljebladh3, Patrik Vestin2, and Per Weslien3
Julia Kelly et al.
  • 1Lund University, Centre for Environmental and Climate Research, Lund, Sweden
  • 2Lund University, Department of Physical Geography and Ecosystem Science, Lund, Sweden
  • 3Gothenburg University, Department of Earth Sciences, Gothenburg, Sweden

The majority of the world’s peatlands are located in northern regions where climate change is occurring most rapidly. Therefore, there is an urgent need to understand whether, and under what conditions, peatlands will remain carbon sinks or become carbon sources. The uncertainties in our predictions stem from a variety of sources, including uncertainty about the competing effects of rising air temperature on ecosystem respiration (Re) and gross primary production. Furthermore, peatlands contain a mixture of plant communities that respond differently to changes in temperature and precipitation. Such heterogeneity complicates attempts to upscale peatland carbon fluxes and predict the future peatland carbon balance.

 

We focus on understanding the sensitivity of peatland Re to temperature and how it relates to vegetation community and the choice of temperature metric. We assess how these relationships changed during and after the severe heatwave and drought (‘hot drought’) in 2018. We conducted manual dark chamber CO2 efflux measurements in Mycklemossen, an oligotrophic mire in southern Sweden in 2018 and in 2019, when weather conditions were closer to the long-term mean. The measurements covered the two main vegetation communities at the site: hummocks (vascular-plant dominated) and hollows (Sphagnum-dominated). We statistically compared the fluxes for both years and vegetation communities, then modelled them using three temperature metrics (air, surface, soil).

 

We found that Re decreased during the hot drought for both vegetation communities, with maximum fluxes of 0.18 and 0.34 mgCO2 m-2 s-1 in 2018 and 2019, respectively. However, the change in Re during the hot drought was dependent on vegetation community: hummock Re decreased substantially more than hollow Re (mean decrease: 48% and 15%, respectively). As a result, hollow Re was highest during drought whereas hummock Re was highest during non-drought conditions. Despite significant differences in Re between the vegetation communities, we found no significant differences in temperature between hummock and hollow vegetation, apart from in July and August 2018, at the peak of the hot drought. Nevertheless, hollow Re was more temperature-sensitive than hummock Re both during and after the hot drought. Furthermore, the temperature sensitivity of modelled Re depended on the choice of driving temperature, such that the surface temperature driven model produced the lowest whilst the soil temperature driven model produced the highest temperature sensitivity. Differences in temperature sensitivity of Re between the drought and non-drought conditions were similarly dependent on the temperature metric used to drive the Re model.

 

We found that peatland Re almost halved during a hot drought. Our results show that predictions of peatland response to warming must account for the proportion of different vegetation communities present, and how this may change, due to their differing responses to warming. The choice of driving temperature in peatland Re models does not impact model accuracy but it does influence the temperature-sensitivity, and thus the impact of temperature variations on the modelled flux. Modellers should therefore base parameter choices on vegetation community and driving temperature. Furthermore, comparisons of Re sensitivity to warming between studies using different driving temperatures may be misleading.  

How to cite: Kelly, J., Kljun, N., Eklundh, L., Klemedtsson, L., Liljebladh, B., Vestin, P., and Weslien, P.: Sensitivity of peatland respiration to vegetation community and temperature metric during a hot drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1161, https://doi.org/10.5194/egusphere-egu2020-1161, 2019

Displays

Display file