EGU2020-12345
https://doi.org/10.5194/egusphere-egu2020-12345
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Dynamic sedimentation process of the turbidity maximum zone in the Yangtze River Estuary under the influence of human activities

Weihua Li1, Xiaohe Zhang2, Zhanhai Li1, and Jiufa Li1
Weihua Li et al.
  • 1East China Normal University, State Key Lab of Estuarine and Coastal Research, China (whli@sklec.ecnu.edu.cn)
  • 2Department of Earth and Environment, Boston University, Boston, MA, USA(zhangbu@bu.edu)

Due to the impact of the Three Gorges Dam on water and sediment storage, the sediment flux into the Yangtze River Estuary has dropped sharply by 70%, and the suspended sediment concentration in the estuary has responded accordingly. From the comparison of the measured suspended sediment concentration data of the Yangtze River estuary for many years, it is known that the suspended sediment concentration in the South Passage has been reduced by about 60% recently, and that in the middle and upper reaches of the North Channel and the South Channel has been reduced by about 40%. On the other hand, A series of artificial engineering has been completed in the past 20 years, such as the 12.5m Deep-Waterway Regulation Engineering, the Nanhui Shoal Slush-enclosure Engineering, and the Hengsha Shoal Slush-enclosure Engineering, etc. These engineering have significantly changed the original water and sediment transport pattern of the Yangtze River Estuary. It resulted in a significant change of the estuarine turbidity maximum zone and the corresponding river mouth bar topography. This paper intends to discuss the impact of human activities on the dynamic sedimentation process of the maximum turbidity zone in the Yangtze River Estuary based on field measured data. Results are as follows:

(1) Compared to two decades ago, the suspended sediment concentration in the North Passage, the South Passage and the North Channel, and the middle and lower reaches of the North Branch is still high, which is related to the existence of the turbidity maximum zone and river mouth bar in these river sections.

(2) The implementation of man-made engineering such as the submerged diversion dike between the North Passage and the South Passage and the Nanhui Shoal Slush-enclosure Engineering changed the flow structure in the upper section of the South Passage, leading to the turbidity maximum zone and the corresponding river mouth bar have completely disappeared.

(3) Affected by the 12.5m Deep-Waterway Regulation Engineering, the turbidity maximum zone and the corresponding river mouth bar originally located at the upper section of the North Passage have also disappeared.

(4) The longitudinal circulation flow structure, salt water wedges, and stagnation points in the middle and lower sections of the North Passage and the South Passage still exist. The positions of the turbidity maximum zone and the corresponding river mouth bar topography are not significantly affected by the engineering. And the core area of ​​the obvious turbidity maximum zone and the river mouth bar (only in the South Passage) still exist. Due to the artificial dredging of the navigation channel in the North Passage, it actually appeared as an invisible river mouth bar that has been dredged by continuous dredging.

 (5) The drastic reduction of sediment flux from the basin has caused seabed erosion adjacent to the Yangtze River Estuary, and the corresponding eroded sediment has become one of the main sediment budget sources of the turbidity maximum zone.

How to cite: Li, W., Zhang, X., Li, Z., and Li, J.: Dynamic sedimentation process of the turbidity maximum zone in the Yangtze River Estuary under the influence of human activities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12345, https://doi.org/10.5194/egusphere-egu2020-12345, 2020

Displays

Display file