EGU2020-12649
https://doi.org/10.5194/egusphere-egu2020-12649
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Analysis On Characters And Dynamic Mechanism Of The Storm-induced Fluid Mud In the North Passage of the Yangtze Estuary

Jiufa Li1, Weihua Li1, and Xiaohe Zhang2
Jiufa Li et al.
  • 1East China Normal University, State Key Laboratory of Estuarine and Coastal Research, China (whli@sklec.ecnu.edu.cn)
  • 2Department of Earth and Environment, Boston University, Boston, MA, USA(zhangbu@bu.edu)

The development of storm-induced fluid mud is an important factor to disturb the waterway transportation. Based on the observation data of fluid mud from 2010 to 2016, the basic characteristics and dynamic factors of the storm-induced fluid mud in the North Passage of the Yangtze River Estuary are analyzed. The main conclusions are as follows: (1) The sediment composition of the storm-induced fluid mud in the North Passage has little difference with the suspended sediment, which shows high correlation with the bed sediments in the middle/lower channel and the north beach of the North Passage, but the space difference of which is weak. (2) Large-thickness fluid mud in the North Passage mainly locates in the manual dredged navigation channel, and cannot stay in the steep slope beaches. It manly distributes between IIN-C and Y channel unit where is under the protection of the south and north embankments. (3) The storm-induced fluid mud in the North Passage characterizes as three stages. The primary-stage fluid mud develops during the storm surge, characterizes as low density, blurred upper and lower interfaces. It migrates quickly following the tidal current, and can be easily weaken by the peak tidal velocity. The development-stage fluid mud mainly occurs after the storm surge, characterizes as clear upper interface, "h" type density profile, with good stability and slowly migration. The dissipation-stage fluid mud characterizes as decreasing sediment amount, increasing sediment density, fuzzy lower boundary, "L" type or multi-steps type density profile, high stability and very weak flowability. (4) The cumulative wave energy during storm surge processes is the most important factor to determine the scale of the storm-induced fluid mud in the North Passage. The stronger the cumulative wave energy, the longer duration and the larger scale of the storm-induced fluid mud will develops. In addition, the weaker tidal power during the storm surge processes is favorable to the formation of the storm-induced fluid mud in the North Passage. Stronger tidal force would cause the shorter dissipation period of the storm-induced fluid mud. (5) The mechanism that up layer tidal current disturbs the fluid mud layer that make its sediment tends to dissipation and transport to the downstream and reciprocating following the tidal current, which plays the main role during the local extinction process of the storm-induced fluid mud in the North Passage. (6) The process of the high-sediment concentration gravity flow generates in the steep slope of the beach and near-bed invades to the manual dredged navigation channel during the storm surge process, is the key process mechanism for the rapid accumulation of storm-induced fluid mud in the North Passage.

How to cite: Li, J., Li, W., and Zhang, X.: Analysis On Characters And Dynamic Mechanism Of The Storm-induced Fluid Mud In the North Passage of the Yangtze Estuary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12649, https://doi.org/10.5194/egusphere-egu2020-12649, 2020

This abstract will not be presented.