EGU2020-12676
https://doi.org/10.5194/egusphere-egu2020-12676
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Depth, area, volume, and kinematics of slow-moving landslides from airborne synthetic aperture radar and mass conservation

Alexander Handwerger1,2, Eric Fielding2, Adam Booth3, and Mong-Han Huang4
Alexander Handwerger et al.
  • 1Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, USA (alexander.handwerger@jpl.nasa.gov)
  • 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
  • 3Department of Geology, Portland State University, Portland, OR, USA
  • 4Department of Geology, University of Maryland, College Park, MD, USA

Slow-moving, deep-seated landslides travel downslope at rates of only a few meters per year and can remain active for decades and possibly centuries. As a result, they transmit large quantities of sediment to the channel network and are a major natural hazard that impact transport corridors and infrastructure. However, because slow-moving landslides rarely fail catastrophically, it is challenging, and often infeasible to directly measure their thickness and volume, two key parameters required to quantify sediment flux and to model landslide motion. Here we use remote sensing data from the NASA/JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to measure the 3-D surface velocity and geometry of over 90 slow-moving landslides in the California Coast Ranges. We then use mass conservation techniques to infer the thickness and volume of each landslide. These landslides have volumes that span between 104 and 107 m3, thicknesses between 3 and 90 m, and move at average annual rates < 5 m/yr. We also examined landslide depth-area and volume-area geometric scaling relations and compared our findings to a worldwide inventory of soil and bedrock landslides compiled by Larsen et al. (2010). We find that the landslide thickness, area, and volume are larger than soil landslides and smaller than bedrock landslides globally. Lastly, we estimate the subsurface geometry of the catastrophic Mud Creek landslide, central California Coast Ranges, during a period of slow motion that lasted at least 8 years before its ultimate failure. We find a volume of ~2.0 x 106 m3, which is close to the post-catastrophic failure volume measured using Structure From Motion (~2.1 x 106 m3) by Warrick et al. (2019). Therefore, in certain cases, it is possible to constrain landslide thickness and volume prior to catastrophic collapse. Our work shows how state-of-the-art remote sensing techniques can be used to better understand landslide processes and quantify their contribution to landscape evolution.

How to cite: Handwerger, A., Fielding, E., Booth, A., and Huang, M.-H.: Depth, area, volume, and kinematics of slow-moving landslides from airborne synthetic aperture radar and mass conservation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12676, https://doi.org/10.5194/egusphere-egu2020-12676, 2020

This abstract will not be presented.