EGU2020-12706, updated on 22 Oct 2023
https://doi.org/10.5194/egusphere-egu2020-12706
EGU General Assembly 2020
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Response of N2O and N2 Emissions in Forest Soils to Temperature Change across China

Haoming Yu, Yunting Fang, and Ronghua Kang
Haoming Yu et al.
  • Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China (yuhaoming15@mails.ucas.ac.cn)

N2O and N2 Emissions from soil in terrestrial ecosystems is a crucial component of the global nitrogen (N) cycle. The response of these two gases emissions from forest soil to temperature change and its underlying mechanisms are essential for predicting N cycle to global warming. Despite the warming-induced effects on soil N cycle is considered to be positive in general, our understanding of temperature sensitivity (Q10) of N2O and N2 emissions is rather limited. We quantified the Q10 of N2O and N2 emissions in forest soils and explored their major driving factors by conducting an incubation experiment using 15N tracer (Na15NO3) with soil samples from nineteen forest sites from temperate to tropical zones. The environmental conditions largely varied: mean annual temperature (MAT) ranging from -5.4 to 21.5oC and mean annual precipitation (MAP) ranging from 300 to 2449 mm. The soil pH varied between 3.62 to 6.38. We incubated soil samples under an anaerobic condition with temperature from 5 to 35oC with an interval of 5oC for 12 or 24 hours, respectively. Soil temperature strongly affected the production of N2O and N2. N2O and N2 production rates showed a positive exponential relation with incubate time and temperature for all forest soils. Our results showed that the Q10 values ranged from 1.31 to 2.98 for N2O emission and 1.69 to 3.83 for N2 emission, indicating a generally positive feedback of N2O and N2 production to warming. Higher Q10 values for N2 than N2O implies that N2 emission is more sensitive to temperature increase. The N2O/(N2O+N2) decreased with increasing temperature in fifteen of nineteen forest soils, suggesting that warming accelerates N2 emission. Strong spatial variation in Q10 were also observed, with tropical forest soils exhibiting high Q10 values and relatively low Q10 in temperate forest soils. This variation is attributed to the inherent differences in N biogeochemical cycling behavior between the microbial communities among sites. Despite soil temperature primarily controls the N2O and N2 emissions, we  explored the effects of other factors such as pH, C/N, DOC and related functional genes. In addition, we partitioned N2O and N2 emissions to different microbial processes (e.g., denitrification, co-denitrification and anammox). The results indicated that denitrification was the main pathway of N2O and N2 production under anaerobic environment and the contribution increased as temperature rise.

Key words: Temperature sensitivity, N2O, N2, Forest soil, Nitrogen cycle, Global warming, Denitrification

How to cite: Yu, H., Fang, Y., and Kang, R.: Response of N2O and N2 Emissions in Forest Soils to Temperature Change across China , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12706, https://doi.org/10.5194/egusphere-egu2020-12706, 2020.

Displays

Display file