EGU2020-14709, updated on 12 Jun 2020
https://doi.org/10.5194/egusphere-egu2020-14709
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

First estimate of NO2 in the upper troposphere from TROPOMI

Eloise Marais, Joanna Joiner, and Sungyeon Choi
Eloise Marais et al.
  • University of Leicester, School of Physics and Astronomy, Leicester, UK (eloise.marais@le.ac.uk)

Nitrogen oxides (NO x = NO + NO2) in the upper troposphere (~10-12 km) are effective at producing ozone in the upper troposphere where ozone is a potent greenhouse gas. Observations of NOx in the upper troposphere are limited in time to a few intensive research aircraft campaigns and in space to commercial aircraft campaigns. There are satellite-derived observations of NO2 in the upper troposphere from the Ozone Monitoring Instrument (OMI), but these are at very coarse resolutions (seasonal, > 2,000 km). The high-resolution Sentinel-5P/TROPOMI instrument offers higher spatial resolution and better cloud-resolving capability than OMI. Here we use synthetic columns of NO2 from the GEOS-Chem chemical transport model to assess feasibility of deriving NO2 in the upper troposphere using partial columns of NO2 above cloudy scenes (the so-called cloud-slicing technique). The model is also used to quantify errors induced by uncertainties in cloud-top height and to determine whether NO2 over cloudy scenes is representative of all-sky conditions (the "truth"). We find that the cloud-slicing approach is spatially consistent (R =0.5) with the "truth", but with a small (10 pptv) bias in background NO2. Cloud-slicing is then applied to TROPOMI total columns of NO2 to derive near-global observations of NO2 in the upper troposphere and assessed against the existing OMI products and aircraft observations from NASA DC8 aircraft campaigns.

How to cite: Marais, E., Joiner, J., and Choi, S.: First estimate of NO2 in the upper troposphere from TROPOMI , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14709, https://doi.org/10.5194/egusphere-egu2020-14709, 2020

Displays

Display file