First estimate of NO2 in the upper troposphere from TROPOMI
- University of Leicester, School of Physics and Astronomy, Leicester, UK (eloise.marais@le.ac.uk)
Nitrogen oxides (NO x = NO + NO2) in the upper troposphere (~10-12 km) are effective at producing ozone in the upper troposphere where ozone is a potent greenhouse gas. Observations of NOx in the upper troposphere are limited in time to a few intensive research aircraft campaigns and in space to commercial aircraft campaigns. There are satellite-derived observations of NO2 in the upper troposphere from the Ozone Monitoring Instrument (OMI), but these are at very coarse resolutions (seasonal, > 2,000 km). The high-resolution Sentinel-5P/TROPOMI instrument offers higher spatial resolution and better cloud-resolving capability than OMI. Here we use synthetic columns of NO2 from the GEOS-Chem chemical transport model to assess feasibility of deriving NO2 in the upper troposphere using partial columns of NO2 above cloudy scenes (the so-called cloud-slicing technique). The model is also used to quantify errors induced by uncertainties in cloud-top height and to determine whether NO2 over cloudy scenes is representative of all-sky conditions (the "truth"). We find that the cloud-slicing approach is spatially consistent (R =0.5) with the "truth", but with a small (10 pptv) bias in background NO2. Cloud-slicing is then applied to TROPOMI total columns of NO2 to derive near-global observations of NO2 in the upper troposphere and assessed against the existing OMI products and aircraft observations from NASA DC8 aircraft campaigns.
How to cite: Marais, E., Joiner, J., and Choi, S.: First estimate of NO2 in the upper troposphere from TROPOMI , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14709, https://doi.org/10.5194/egusphere-egu2020-14709, 2020