EGU2020-15
https://doi.org/10.5194/egusphere-egu2020-15
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Composition of lipids from the First Lusatian lignite seam of the Konin Basin (Poland): relations to vegetation, climate and carbon cycling during the mid-Miocene Climatic Optimum

Achim Bechtel1, Marek Widera2, and Michal Woszczyk3
Achim Bechtel et al.
  • 1Montanuniversitaet Leoben, Petroleum Geology, Applied Geosciences & Geophysics, Leoben, Austria (achim.bechtel@unileoben.ac.at)
  • 2Adam Mickiewicz University, Institute of Geology, 12 Krygowski Street, 61-680 Poznań, Poland
  • 3Adam Mickiewicz University, Department of Quarternary Geology & Paleogeography, 10 Krygowski Street, 61-680 Poznań, Poland

Samples of detrital lignite have been collected for organic geochemical and carbon isotope analyses from the First Lusatian lignite seam at the Adamów, Jóźwin IIB and TomisÅ‚awice opencast mines, deposited after the last peak of the Mid-Miocene Climatic Optimum. The aim of the study is to improve the chemotaxonomic value of biomarkers by relating the results to existing paleobotanical data, and to gain information about the influencing factors on δ13C of lignite and lipids. Furthermore, biomarker and isotopic proxies are tested for their applicability in paleoclimate studies.

The relative abundances of mid-chain (C23, C25) n-alkanes and their 1–2‰ higher δ13C values compared to long-chain n-alkanes (C29, C31) argue for a minor contribution of macrophytes (graminoids, etc.) to peat formation, enhanced during periods of raised water level. The presence of ferruginol and dehydroferruginol testifies the contribution of taxodioid Cupressaceae. The abundances of pimarane-type diterpenoids and the presence of non-aromatic abietane-derivatives argue for the contribution of Pinaceae. Based on the presence of lupeol and lupane-type triterpenoids, an input of Betulaceae can be concluded. The contribution of further angiosperms cannot be specified based on the composition of pentacyclic triterpenoids. However, the results indicate mixed vegetation, and are in agreement with paleobotanical data highlighting abundant conifers of the Cupressaceae and Pinaceae families, as well as angiosperms of various families (e.g., Nyssa, Quercus, Fagus), including Betulaceae (e.g., Alnus, Betula, Corylus). Based on the relationship between the carbon preference index of n-alkanes and mean annual air temperatures, obtained from a global database of peatlands, an average temperature of 24.5 °C is obtained. This value is significantly higher as estimated from paleobotanical data (15.7–19.7 °C), probably due to the influence of changes in vegetation on carbon preference index.

The relative abundances of diterpenoids versus di- plus angiosperm-derived triterpenoids in detrital lignite samples revealed variable contributions of gymnosperms and angiosperms during the middle Miocene. Consistent with these results, a positive relationship exists between the di-/(di- + tri-) terpenoid biomarker ratios and δ13C of lignite samples, indicating the dominating role of varying gymnosperm/angiosperm contributions on the carbon isotopic composition of lignite. The C-isotope data of long-chain n-alkanes, diterpenoids, and angiosperm-derived triterpenoids co-vary within the profiles, arguing for an overall control of changes in δ13C of atmospheric CO2 on δ13C of plant lipids. Fluctuations in δ13C of individual compounds may also be related to changes in carbon cycling within the peat, humidity and air temperature.

How to cite: Bechtel, A., Widera, M., and Woszczyk, M.: Composition of lipids from the First Lusatian lignite seam of the Konin Basin (Poland): relations to vegetation, climate and carbon cycling during the mid-Miocene Climatic Optimum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15, https://doi.org/10.5194/egusphere-egu2020-15, 2019

This abstract will not be presented.

Comments on the presentation

AC: Author Comment | CC: Community Comment | Report abuse

Presentation version 1 – uploaded on 03 Apr 2020 , no comments