EGU2020-15936
https://doi.org/10.5194/egusphere-egu2020-15936
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Which hydro-meteorological variables control large-scale photosynthesis?

Wantong Li, Mirco Migliavacca, Yunpeng Luo, and René Orth
Wantong Li et al.
  • Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany (wantong@bgc-jena.mpg.de)

Vegetation dynamics are determined by a multitude of hydro-meteorological variables, and this interplay changes in space and time. Due to its complexity, it is still not fully understood at large spatial scales. This knowledge gap contributes to increased uncertainties in future climate projections because large-scale photosynthesis is influencing the exchange of energy and water between the land surface and the atmosphere, thereby potentially impacting near-surface weather. In this study, we explore the relative importance of several hydro-meteorological variables for vegetation dynamics. For this purpose, we infer the correlations of anomalies in temperature, precipitation, soil moisture, VPD, surface net radiation and surface downward solar radiation with respective anomalies of photosynthetic activity as inferred from Sun-Induced chlorophyll Fluorescence (SIF). To detect changing hydro-meteorological controls across different climate conditions, this global analysis distinguishes between climate regimes as determined by long-term mean aridity and temperature. The results show that soil moisture was the most critical driver with SIF in the simultaneous correlation with dry and warm conditions, while temperature and VPD was both influential on cold and wet regimes during the study period 2007-2018. We repeat our analysis by replacing the SIF data with NDVI, as a proxy for vegetation greenness, and find overall similar results, except for surface net radiation expanding controlled regions on cold and wet regimes. As the considered hydro-meteorological variables are inter-related, spurious correlations can occur. We test different approaches to investigate and account for this phenomenon. The results can provide new insight into mechanisms of vegetation-water-energy interactions and contribute to improve dynamic global vegetation models.

How to cite: Li, W., Migliavacca, M., Luo, Y., and Orth, R.: Which hydro-meteorological variables control large-scale photosynthesis?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15936, https://doi.org/10.5194/egusphere-egu2020-15936, 2020

Displays

Display file