Land use and land cover change impact on surface temperature: the scale issue
- Department of Earth and Environment, Boston University, United States of America (lidan@bu.edu)
While land use and land cover change (LULCC) is often a temporal phenomenon (i.e., a patch transitions from one land cover type to another), many studies use a space-for-time approximation that quantifies the LULCC impact (say on surface temperature or fluxes) by comparing two adjacent patches of different land covers. An important consideration embedded in this space-for-time approximation is the scale, which determines what assumptions we can make when constructing models for studying land-atmosphere interactions over heterogeneous terrain. Most previous studies employ one-dimensional models without considering the appropriate scale associated with these models. In this presentation, the scale issue in studying LULCC-induced surface temperature anomalies will be discussed using a hierarchy of models. Typical one-dimensional models based on the surface energy balance and/or convective boundary layer dynamics will be compared to two-dimensional models where horizontal advection is explicitly considered. The results highlight the importance of scale in determining the sensitivity of land surface temperature to changes in albedo and moisture/vegetation characteristics.
How to cite: Li, D. and Wang, L.: Land use and land cover change impact on surface temperature: the scale issue, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1634, https://doi.org/10.5194/egusphere-egu2020-1634, 2019