EGU2020-16496, updated on 08 Jan 2024
https://doi.org/10.5194/egusphere-egu2020-16496
EGU General Assembly 2020
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Free soil colloids and colloidal building units of soil aggregates

Ni Tang, Nina Siebers, and Erwin Klumpp
Ni Tang et al.
  • Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm Johnen Straße, 52425 Jülich, Germany

Nanosized mineral particles and organic matter (<100 nm) ,as well as their associations, belong to the most important ingredients for the formation of the soil aggregate structure being a hierarchically organized system. Colloids (< 220 nm) including nanoparticles can be occluded as primary building units of soil aggregates. Nevertheless, a large proportion of these colloids is mobile and presents in the solution phase (as “free”) within the soil matrix. However, the differences between “free” and occluded colloids remain unclear.

Here, both occluded and free colloids were isolated from soil samples of an arable field with different clay contents (19% and 34%) using wet sieving and centrifugation. The release of occluded colloids from soil macroaggregates (>250 µm) was carried out with ultrasonic treatment at 1000 J mL-1. The free and occluded colloidal fractions were then characterized for their size-resolved elemental composition using flow field-flow fractionation inductively coupled plasma mass spectrometry and organic carbon detector (FFF-ICP-MS/OCD). In addition, selected samples were also subjected to transmission electron microscopy as well as pyrolysis field ionization mass spectrometry (Py-FIMS).

Both, free and occluded colloids were composed of three size fractions: nanoparticles <20 nm, medium-sized nanoparticles (20 nm–60 nm), and, fine colloids (60 nm–220 nm). The fine colloid fraction was the dominant size fraction in both free and occluded colloids, which mainly consist of organic carbon, Al, Si, and Fe, probably present as phyllosilicates and associations of Fe- and Al- (hydr)oxides and organic matter. However, the organic matter contents for all three size fractions were higher for the occluded colloids than for the free ones. The role of OM concentration and composition in these colloids will be discussed in the paper.

How to cite: Tang, N., Siebers, N., and Klumpp, E.: Free soil colloids and colloidal building units of soil aggregates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16496, https://doi.org/10.5194/egusphere-egu2020-16496, 2020.

This abstract will not be presented.