EGU2020-16975, updated on 11 Jan 2022
https://doi.org/10.5194/egusphere-egu2020-16975
EGU General Assembly 2020
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Composition of fluids released along a subduction interface with increasing depth: insights from fluid inclusions analysis on the Schistes Lustrés - Monviso transect (Western Alps)

Clément Herviou1, Anne Verlaguet1, Philippe Agard1, Hugues Raimbourg2, Michele Locatelli1, and Alexis Plunder3
Clément Herviou et al.
  • 1Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre de Paris, ISTeP UMR 7193, F 75005 Paris, France
  • 2Université d’Orléans, Institut des Sciences de la Terre D’Orléans, UMR 7327, F 45071 Orléans, France
  • 3BRGM, F 45060 Orléans, France

Important amounts of fluids are released in subduction zones by successive dehydration reactions occurring both in the previously hydrated oceanic crust (and mantle) and overlying sedimentary cover. The release and circulation of such fluids in rocks have major consequences on both their mechanical and chemical behavior. Indeed, the presence of a free fluid phase strongly modifies the rock rheology, fracturing properties, and could be implicated in both intermediate-depth earthquake and slow slip events nucleation. Moreover, the scale of mass transfer, associated chemical changes in infiltrated rocks and element recycling in subduction zones are controlled by both the rock permeability and the amount and composition of such fluids. Thus, there is a crucial need to identify the major fluid sources, amounts and pathways to better constrain their impact on subduction dynamics.

Metamorphic veins, as well as mineralized fractures and shear zones in exhumed fossil subduction zones are the best witnesses of fluid-rock interactions and fluid circulation pathways. However, their interpretation in terms of fluid sources, residence time, scale of circulation requires a good knowledge of the composition of potential fluid sources. In order to determine the composition of the fluid released by both oceanic crust and sediments at various depth along their subduction, we analyzed the composition of fluid inclusions contained in vein minerals formed at peak P-T conditions, in rock units buried at various depths in the Alpine subduction zone.

The Schistes Lustrés complex is a slice-stack representing the deep, underplated part of the former Alpine accretionary wedge. These Alpine Tethys rocks are mainly composed of oceanic calcschists with fewer mafic and ultramafic rocks, buried to various depths before exhumation. From West to East, the juxtaposed Schistes Lustrés units show increasing peak P-T conditions from blueschist (300-350°C - 1.2-1.3 GPa) to eclogite facies (580°C - 2.8 GPa). This study focuses on the Schistes Lustrés - Monviso transect, which shows an almost continuous increase in metamorphic grade.

In the Schistes Lustrés blueschist-facies sediments, fluid inclusions were analyzed in quartz from high-pressure veins, i.e. quartz that co-crystallized with prograde to peak metamorphic minerals such as lawsonite and Fe-Mg carpholite. In the metamorphosed mafic rocks, we analyzed fluid inclusions from the peak metamorphic assemblages, i.e. glaucophane +/- omphacite in blueschist facies rocks, omphacite in eclogite-facies slices. Raman spectroscopy data on these fluid inclusions suggest that fluids released during dehydration of calcschists in blueschist-facies conditions are aqueous fluids with low-salinity and small amounts of CO2 and CH4. In contrast, eclogitic fluids released from metagabbros are highly saline brines with low N2 content. These results, which will be associated with LA-ICP-MS analysis of fluid inclusions in metasedimentary quartz veins, will contribute to better constrain the evolution of composition of the fluids liberated by dehydration reactions with depth and protolith composition along the subduction interface.

How to cite: Herviou, C., Verlaguet, A., Agard, P., Raimbourg, H., Locatelli, M., and Plunder, A.: Composition of fluids released along a subduction interface with increasing depth: insights from fluid inclusions analysis on the Schistes Lustrés - Monviso transect (Western Alps), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16975, https://doi.org/10.5194/egusphere-egu2020-16975, 2020.

This abstract will not be presented.