EGU2020-16977
https://doi.org/10.5194/egusphere-egu2020-16977
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Eocene post-collisional magmatism in Himalaya orogenic belt: evidence from petrography, zircon U-Pb age and Sr-Nd-Hf isotope of the Mayum alkaline complex, southern Lhasa subterrane

Xiaoshuang Chen and Haijin Xu
Xiaoshuang Chen and Haijin Xu
  • School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, China (chenxiaoshuang@cug.edu.cn)

Alkaline magmatism is commonly generated in extensional settings, playing an important role in constraining the timing of slab breakoff. Eocene post-collisional magmatism is widely distributed along the Gangdese belt of southern Tibet. However, few Eocene post-collisional alkaline magmatism has been identified. Here, we present a comprehensive study of whole-rock geochemistry, zircon U-Pb ages and Sr-Nd-Hf isotopes of the Mayum alkaline complex from the Southern Lhasa Subterrane, providing an insight into the timing of breakoff of the Neo-Tethyan slab. The alkaline complex is composed of amphibolite syenite, quartz syenite and alkaline granite. The mafic microgranular enclaves are ubiquitous in the syenites. Zircon U-Pb analyses indicates that the alkaline rocks were generated in Early Eocene (ca. 53-50 Ma). These ages suggest that the alkaline rocks emplaced shortly (10-15Ma) after the continental collision between the Indian and Eurasian plates. The alkaline rocks have high SiO2 (64.32-77.36 wt.%), Na2O + K2O (6.63-9.03 wt.%) contents, low MgO (0.14-2.52 wt.%) contents. These rocks show obvious arc-like geochemical features in trace elements, i.e., enrichment in LILEs (e.g., Rb, K), LREEs, Th and U, and depletion in HFSEs (e.g., Nb, Ta, Ti), HREEs with strongly to moderately negative Eu anomalies (δEu=0.28–0.72). These features together with high FeOT/MgO, Ga/Al, Ce/Nb and Y/Nb values, and low Ba, Sr contents, suggesting that the Mayum alkaline rocks belong to an A2-type granitoids. Besides, the alkaline rocks have homogeneous initial 87Sr/86Sr ratios (0.7052-0.7059) and negative εNd(t) values (-2.1 to -0.9) for whole-rock, and positive zircon εHf(t) values (+0.73 to +11.16). Nd-Hf isotope decoupling suggests that the alkaline was likely produced by mixing of mantle- and crust-derived magmas under a post-collisional extensional setting. Combined with previous published results, we propose that the slab breakoff of the subducting Neo-Tethyan oceanic lithosphere at least prior to Early Eocene (ca. 53Ma). The Eocene Mayum alkaline complex might be related to asthenosphere upwelling trigged by the slab breakoff.

How to cite: Chen, X. and Xu, H.: Eocene post-collisional magmatism in Himalaya orogenic belt: evidence from petrography, zircon U-Pb age and Sr-Nd-Hf isotope of the Mayum alkaline complex, southern Lhasa subterrane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16977, https://doi.org/10.5194/egusphere-egu2020-16977, 2020

Displays

Display file