EGU General Assembly 2020
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Inner-core dynamics during the rapid intensification of Hurricane Wilma (2005) with a steady radius of the maximum wind

Nannan Qin1, Da-Lin Zhang2, William Miller3, and Chanh Kieu4
Nannan Qin et al.
  • 1Fudan University, Atmospheric Sciences, Atmospheric and Oceanic Sciences, shanghai, China (
  • 2University of Maryland at College Park
  • 3University of Oklahoma
  • 4Indiana University

Recent studies show that some hurricanes may undergo rapid intensification (RI) without contracting the radius of maximum wind (RMW). A cloud-resolving WRF-prediction of Hurricane Wilma (2005) is used herein to examine what controls the RMW contraction and how a hurricane could undergo RI without contraction. Results show that the processes controlling the RMW contraction are different within and above the planetary boundary layer (PBL). In the PBL, radial inflows contribute to contraction, with frictional dissipation acting as an inhibiting factor. Above the PBL, radial outflows and vertical motion govern the RMW contraction, with the former inhibiting it. A budget analysis of absolute angular momentum (AAM) shows that the radial AAM flux convergence is the major process accounting for the spinup of the maximum rotation, while the vertical flux divergence of AAM and the frictional sink in the PBL oppose the spinup. During the RI stage with no RMW contraction, the local AAM tendencies in the eyewall are smaller in magnitude and narrower in width than those during the contracting RI stage. In addition, the AAM following the time-dependent RMW decreases with time in the PBL and remains nearly constant aloft during the contracting stage, whereas it increases during the non-contracting stage. These results reveal different constraints for the RMW contraction and RI, and help explain why a hurricane vortex can still intensify after the RMW ceases contraction

How to cite: Qin, N., Zhang, D.-L., Miller, W., and Kieu, C.: Inner-core dynamics during the rapid intensification of Hurricane Wilma (2005) with a steady radius of the maximum wind, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1704,, 2020.