Large Eddy Simulations of the Arctic atmospheric boundary layer around the MOSAiC drift track
- Alfred Wegener Insitute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany (Daniela.Littmann@awi.de)
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is the largest one-year-long research expedition within the central Arctic and has started in September 2019 to gather comprehensive climate data from an almost unreachable region. The gathered observational data in combination with concurrent high-resolution modeling provide new insights that play a key role for the improvement of our understanding of the interaction processes between the atmosphere, ocean, and sea ice and eventually global climate change. The present study focuses on the influence of the surface conditions on the atmospheric boundary layer by applying the large eddy simulation model configuration of the icosahedral non-hydrostatic model (ICON-LES). ICON-LES is used here with a grid spacing between 50 m and 800 m and set up to a domain with radii of 10 km to 100 km around the MOSAiC drift track. The model is driven by output data from weather forecast simulations for selected stormy and rather calm days. Results of simulations with various spatial horizontal resolutions and with different surface conditions such as ice fraction, ice thickness, snow cover will be compared and evaluated against observational data from MOSAiC.
How to cite: Littmann, D., Dorn, W., Bresson, H., Maturilli, M., and Rex, M.: Large Eddy Simulations of the Arctic atmospheric boundary layer around the MOSAiC drift track, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18102, https://doi.org/10.5194/egusphere-egu2020-18102, 2020