EGU2020-18765
https://doi.org/10.5194/egusphere-egu2020-18765
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Blowing snow in Antarctica and its contribution to the surface mass balance

Franziska Gerber1,2, Varun Sharma1,2, and Michael Lehning1,2
Franziska Gerber et al.
  • 1CRYOS, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
  • 2WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland (gerberf@slf.ch)

On the windiest, coldest and driest continent of the world, blowing snow is frequently active, especially during the winter months. Coastal regions with strong katabatic winds are especially prone to blowing snow and its sublimation. However, the contribution of blowing snow to the surface mass balance from snow blown off the continent and blowing snow sublimation is not well constraint by direct measurements. Furthermore, model and satellite assessments disagree on the magnitude of the effect.

Current studies of the Antarctic surface mass balance are mainly based on regional climate models. However, most models rely on rather simple representations of the snow cover as well as blowing snow. With the aim of improving the surface mass balance representation and specifically snow transport and sublimation due to blowing snow, we coupled the well-established snow model SNOWPACK to the Weather Research and Forecasting Model (WRF). The new coupled model, called ‘CRYOWRF’, is aimed at an improved representation of snow and snow-atmosphere interaction in all cryospheric environments.

CRYOWRF simulations show good agreement with measurements at meteorological stations on the Antarctic continent. Moreover, the timing of modeled blowing snow events agrees well with few local blowing snow measurements. Monthly frequencies of simulated and satellite-derived spatial blowing snow distributions result in similar patterns. We will present estimates of the amount and importance of blowing snow on the surface mass balance in Antarctica based on 8 years of simulations (2010-2018), with a special focus on blowing snow sublimation. The introduced model will be useful for future predictions of surface mass balance estimates, which are important to assess the contribution of the Antarctic ice sheet to sea level rise in a warming world.

How to cite: Gerber, F., Sharma, V., and Lehning, M.: Blowing snow in Antarctica and its contribution to the surface mass balance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18765, https://doi.org/10.5194/egusphere-egu2020-18765, 2020

Displays

Display file