EGU2020-18811
https://doi.org/10.5194/egusphere-egu2020-18811
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Transboundary Extreme Ultrafine Dust Events in East Asia under a Warmer Monsoon Climate

Gwangyong Choi
Gwangyong Choi
  • Major of Geography Education, Jeju National University, Jeju, Republic of Korea (tribute@hanmail.net)

Since the late 20th century East Asia has frequently experienced unprecedented transboundary extreme ultrafine dust events (TEUDEs) due to a fast economic development based on significant amount of fossil fuel consumption. In this study, spatio-temporal patterns of the TEUDEs in East Asia and the roles of synoptic climate patterns and changing large-scale atmospheric circulation systems in exacerbating the anthropogenic atmospheric pollution events causing considerable human deaths are examined. Analyses of the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra aerosol optical depth (AOD) data (2000-2019) clearly show that the pollutants are produced mainly in northern China and move toward central Korea and southern Japanese islands during cold seasons when coals consumption soars for heating. Synoptic climatic maps drawn from the NCEP-NCAR I reanalysis data for multiple TEUDEs demonstrate that a north clockwise- south anticlockwise wind vector anomaly pattern in cold seasons formed by less southward meandering of Siberian High pressure (SH) helps the stagnation of significant amount of ultrafine dusts over East Asia. It is also notable that the long-term poleward retreating trend of cold season circumpolar vortex, which is associated with less frequent gusty wind flow from the SH, may provide a favorable condition for intense, long-lasting TEUDEs across East Asia under a warmer monsoon climate.

How to cite: Choi, G.: Transboundary Extreme Ultrafine Dust Events in East Asia under a Warmer Monsoon Climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18811, https://doi.org/10.5194/egusphere-egu2020-18811, 2020