EGU2020-1906
https://doi.org/10.5194/egusphere-egu2020-1906
EGU General Assembly 2020
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Studying the Ionospheric Responses Induced by a Geomagnetic Storm in September 2017 with Multiple Observations in America

Yang Liu1, Zheng Li1, and Jinling Wang2
Yang Liu et al.
  • 1BeiHang University, Beijing, China (liuyangee@buaa.edu.cn)
  • 2University of New South Wales, Sydney, Australia

A series of studies have suggested that a geomagnetic storm can accelerate the formation of plasma depletions and the generation of ionospheric irregularities. Using observation data from the Continuously Operating Reference Stations (CORS) network in the USA, the responses of the ionospheric total electron content (TEC) to the geomagnetic storm on September 8, 2017 are studied in detail. A mid-latitude trough was discovered from 01:00 UT to 06:00 UT in the USA with a length exceeding 5000 km. The probable causes are the combination of a classic negative storm response with increments in the neutral composition and the expansion of the auroral oval, pushing the mid-latitude trough equatorward.  Super-scale plasma depletion was observed by SWARM data accompanied by the expansion of mid-latitude trough. Both PPEF from high latitudes and pole-ward neutral wind are responsible for the large-scale ionospheric irregularities. Medium-scale travelling ionospheric disturbances (MSTID) with wavelengths of 600–700 km were generated accompanied by a drop and perturbation in the electron density. The intensity of the MSTID fluctuations reached over 2.5 TECU, which were discovered by filtering the differential TEC. The evolution of plasma depletions were associated with the MSTID propagating from high latitudes to low latitudes. SWARM spaceborne observations also showed a drop in the electron density from 105 to 103 compared to the background values at 28° N, 96° W, and 25° N, 95° W. This research investigates super-scale plasma depletions generated by geomagnetic storms using both CORS GNSS and spaceborne observations. The proposed work is valuable for better understanding the evolution of ionospheric depletions during geomagnetic storms.

How to cite: Liu, Y., Li, Z., and Wang, J.: Studying the Ionospheric Responses Induced by a Geomagnetic Storm in September 2017 with Multiple Observations in America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1906, https://doi.org/10.5194/egusphere-egu2020-1906, 2020.

Displays

Display file